Refine Your Search

Topic

Author

Search Results

Technical Paper

A Multiplexing Communication IC for Automotive Body-Electronic Control

1994-03-01
940364
In the field of automotive body electronic control such as control of door locks, power windows, and wipers, there is a growing need of multiplexing communication to reduce the amount of wire harnesses. To meet this need, we developed a multiplexing communication protocol particularly suited to the body electronic control. Based on the developed protocol, we designed a communication control IC and a simple driver/receiver circuit with a few discrete components. The bus access method of the communication is the CSMA/CD with nondestructive bit arbitration, and its bit rate is 5 kbps. Its transmission media is a single wire. The communication IC has a multiplexing control block and a serial I/O block for an interface with a host CPU. It was fabricated using CMOS technology and has a chip of 2.6mm x 3.0mm in size that contains about 5,000 transistors. The driver/receiver circuit consists of one transistor, one capacitor and several resistors.
Technical Paper

A New Battery System for the Estima Hybrid Minivan

2002-03-04
2002-01-1090
Development of a new battery system for Toyota Estima Hybrid, the world's first minivan hybrid vehicle, has been completed. The battery pack that consists of 30 nickel metal hydride battery modules is compactly arranged under the 3rd seat in the cabin along with components such as the battery cooling blower and the ducts. This arrangement was designed in consideration of user's vehicle use, passengers' comfort and efficient battery-cooling performance.
Journal Article

Analysis of Oxidative Deterioration of Biodiesel Fuel

2008-10-06
2008-01-2502
Methyl esters of saturated/unsaturated higher aliphatic acids (FAMEs) and a FAME of waste cooking oil (WCOME) were heated at 120°C in an air gas flow. The samples were analyzed before and after heating, using six different methods including electrospray ionization mass spectrometry. As a result, the samples after heating were found to contain low molecular weight aliphatic compounds and oligomers of the FAME. Based on the chemical structure of these oxidation products, reaction schemes were proposed for the deterioration of FAMEs. In addition, two unsaturated FAMEs containing 2,6-di-t-butyl-p-cresol (BHT) were similarly heated and analyzed to examine the effect of BHT on the oxidation of these FAME.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 1. Analysis and Test of Nylon and GTL Diesel Fuel Before and After Immersion

2006-10-16
2006-01-3326
The effect of GTL diesel fuel on organic materials used in fuel delivery systems of vehicles was investigated. Specimens made from 16 kinds of organic materials were immersed in GTL diesel fuels synthesized at Refinery-A and Refinery-B (referred to as GTL-A and GTL-B, respectively) and then subjected to tensile testing. The tensile test results revealed that elongation of the nylon sample immersed in GTL-A was extremely small, about 4% of that of untreated nylon. In the light of this finding, the GTL diesel fuels and nylons before and after immersion test were analyzed in detail using about 20 analysis methods to determine the cause for poor elongation. The following points were found. (1) GTL-A consisted of low molecular-weight paraffins. (2) GTL-A had low molecular-weight i-paraffins. (3) The nylon immersed in GTL-A contained low molecular-weight paraffins. (4) The paraffins in the nylon immersed in GTL-A were richer in i-paraffins than the original GTL-A.
Technical Paper

Automatic Transmission Control System Developed for Toyota Mild Hybrid System (THS-M)

2002-03-04
2002-01-1253
Environmental improvement is moving forward, due in part to the reduction of fuel consumption of automatic transmission(AT) vehicles as a result of social requirements in recent years and many measures have been implemented. Adoption of idling stop is a typical example introduced to reduce energy consumption while the vehicle is stopped to improve the urban environment. However, there are problems such as responsiveness and smoothness for an AT vehicle when the engine is stopped with the shift selector in “D” range. To overcome these problems, a new start clutch control system has been developed using an electric oil pump installed in a simple hybrid vehicle called a mild hybrid. As a result, a smooth feeling starting performance is achieved by operating the system in combination with the engine and other systems.
Technical Paper

Classification and View of Automotive Power Supply Voltage for HEV, PHEV and EV

2011-05-17
2011-39-7227
In the twenty-first century, the development of vehicles has been proceeding towards electronics, electric propulsion and system integration in 5 big trends. Environment, Safety, Market Change, Energy Security and Natural Resources. Especially, “Electric Propulsion of Vehicles” is rapidly accelerated for countermeasure of global warming. In this paper, we will propose the current status analysis for automotive high power supply voltage and classification for future view of HEV(Hybird Electric Vehicle). PHEV(Plug-in Hybrid Electric Vehicle) and EV(Electric Vehicle).
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Technical Paper

Combustion Improvement of CNG Engines by Hydrogen Addition

2011-08-30
2011-01-1996
This research aimed to identify how combustion characteristics are affected by the addition of hydrogen to methane, which is the main components of natural gas, and to study a combustion method that takes advantage of the properties of the blended fuel. It was found that adding hydrogen did not achieve a thermal efficiency improvement effect under stoichiometric conditions because cooling loss increased. The same result was obtained under EGR stoichiometric conditions. In contrast, under lean burn conditions, higher thermal efficiency and lower NOx than with methane combustion was achieved by utilizing the wide flammability range of hydrogen to expand the lean limit. Although NOx can be decreased easily by the addition of large quantities of hydrogen, the substantially lower energy density of the fuel causes a substantial reduction in cruising range. Consequently, this research improved the combustion of a CNG engine by increasing the tumble ratio to 1.8.
Technical Paper

Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition

2018-09-10
2018-01-1741
Among the challenges for the future facing the development of gasoline engines, one of the most important is the reduction of particles emissions. This study proposes a critical and objective evaluation of the influence of fuel characteristics on gasoline particles emission through the use of Fuel Particle Indices. For this, a selected fuel matrix composed of 22 fuels was built presenting different volatility and chemical composition (content in total aromatics, heavy cuts and ethanol). To represent the fuel sooting tendency, seven Fuel Particle Indices were selected based on a literature review, namely, Particulate Matter Index (PMI), Particulate Number index (PNI), Threshold Sooting index (TSI), Smoke point (SP), Oxygen Extended Sooting Index (OESI), Simplified index 1 and 2 (sPMI 1, sPMI 2). These indices were computed on the fuel matrix and compared on the basis of three main axes. First, the sensitivity to fuel variation.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Development of Abradable Flame Spray Coating Technology

1991-02-01
910400
The authors, et al. have succeeded in the practical application of the abradable flame spray coating, used in aircraft engines for the prevention of air leakage and the improvement of efficiency, to automobile turbochargers for the first time in the world. Two layers consisting of a bond coated layer and an abradable layer used to be coated by separate spray nozzles under the conventional technique. In this paper, equations of relations between various flame spray coating conditions and the quality of coated film, which were derived from measured results, will be described. Flame spray coating conditions, that allow the double layer coating by the same spray nozzle, have been determined for each layer. Temperatures and speeds of the flame were measured by means of two-color type high-speed cameras, and equations of their relations with the flame spray coating conditions are derived from the measured result.
Technical Paper

Development of Anti-Plug Fouling Ignition System

1992-02-01
920575
The new generation engines currently being developed tend to require cold type spark plugs, which are prone to fouling. This paper describes the development of a new Coil on Plug ignition system that resolves this problem by using the high energy and the fast secondary voltage rise time of a capacitive ignition while maintaining inductive ignition characteristics for good ignitability. To evaluate the effectiveness of the system, spark plug insulation resistance was monitored and cold tests were conducted. The results demonstrated that the new ignition system is remarkably effective: insulation resistance remains high and startability and driveability are unaffected under conditions normally leading to excessive misfires and failure to start with a conventional inductive system. To satisfy environmental concerns, automobile manufactures are increasingly turning to high compression ratio engines in view of their improved performance.
Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

Development of Fuel Cell (FC) System for New Generation FC Bus

2019-04-02
2019-01-0372
Toyota Motor Corporation has been actively pursuing the development of fuel cell vehicles (FCVs) to respond to global environmental concerns and demands for clean energy. Toyota developed the first fuel cell (FC) bus to receive vehicle type certification in Japan. Subsequently, a new FC bus has been developed, which adopts two FC systems and four high-voltage batteries to achieve the required high power performance and durability. For enhanced durability, the FC system is controlled to maximize usage of the high-voltage batteries and to reduce the number of electric potential changes of the fuel cell. To accomplish this, the voltage of the FC stack must be kept high and FC power must be kept low. The high-voltage batteries were used to actively minimize FC power during acceleration.
Technical Paper

Development of Fuel Cell Hybrid Vehicle in TOYOTA

2011-05-17
2011-39-7238
The outline of the TOYOTA FCHV-adv is described in this paper. The TOYOTA FCHVadv achieved an approximately 25 percent improvement in vehicle fuel efficiency and about 1.9 times the amount of usable hydrogen in comparison with the previous model. These improvements have enabled almost 2.5 times longer practical cruising range, more than 500 km. The freeze start capabilities of the FCHV-adv were improved by modifying the FC stack and control system. As a result, the FCHV-adv has been capable of starting at a temperature of -30°C. In the future, TOYOTA intends to improve durability and reduce costs.
Technical Paper

Development of Fuel-Cell Hybrid Vehicle

2002-03-04
2002-01-0096
Toyota Motor Corporation developed the Fuel Cell Hybrid Vehicle (FCHV). The FCHV-4 is an evolution of the conventional fuel cell vehicle that has made immense improvements in efficiency. Both a fuel cell and a secondary battery are used as sources of energy for the hybrid system. By using these energy sources proportionally, the system can be kept at or near its optimum state. The FCHV-4's system is designed to improve the efficiency and aims for high responsiveness when the vehicle is in a transitional state. In the same way as most electric vehicles, and as in the gasoline powered hybrid “Prius”, the energy the traction motor creates during breaking can be used to regenerate the secondary. The fuel cell and traction motor inverter are connected directly, with the secondary battery connected through the DC/DC converter to the fuel cell in parallel.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Technical Paper

Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai”

2015-04-14
2015-01-1169
The new Toyota FCV “Mirai” has reduced the weight, size, and cost of the high-pressure hydrogen storage system while improving fueling performance. The four 70 MPa tanks used on the 2008 Toyota FCHV-adv were reduced to two new larger diameter tanks. The laminated structure of the tanks was optimized to reduce weight, and a high-strength low-cost carbon fiber material was newly developed and adopted. The size of the high-pressure valve was reduced by improving its structure and a high-pressure sensor from a conventional vehicle was modified for use in a high-pressure hydrogen atmosphere. These innovations helped to improve the weight of the whole storage system by approximately 15% in comparison with Toyota FCHV-adv, while reducing the number of component parts by half and substantially reducing cost. The time required to fuel the FCV was greatly reduced by chilling the filling gas temperature at the hydrogen filling station to −40°C (as per SAE J2601).
Technical Paper

Development of Methanol Lean Burn System

1986-03-01
860247
A methanol fueled, lean burn system has been developed to improve both specific fuel consumption and NOx emissions. A 1.6L four-cylinder engine with increased compression ratio has been used to develop this system. Three major components of the Toyota Lean Combustion System (T-LCS) have been applied: (1) A helical port with a swirl control valve (2) A lean mixture sensor (3) Timed, multi-point fuel injection. A 2250 lb. Inertia Weight test vehicle has been fitted with this engine, and fuel system materials have been modified. This methanol, lean burn system has improved the fuel economy by about 12% still satisfying the 1986 emission standards of the U.S.A. and Japan. Aldehyde emissions have also been evaluated.
X