Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Technical Paper

1990-The Engineer and TQM

1990-04-01
900894
This paper will identify the role of the engineer in the Total Quality Management movement. In the latter 1980's quality and reliability were identified as being a result of good business practices, rather than only being effected by manufacturing and design systems. In the past, engineers were given total design responsibility with little or no control once the design left their hands. Product cost analysis recently identified approximately 65% of product cost comes from areas which the engineer cannot control. This paper will show how the skills of the engineer are being integrated into the total business environment through a structured planning system, resulting in products and services with customer focus. Quality and reliability in the 1990's will be a result of this well defined and applied business system.
Technical Paper

20 Questions About Acoustics in Industry

1989-04-01
890969
The potential contributions of acoustical technology to manufacturing companies pervade nearly all of its functions from marketing and product planning to design engineering and quality control. Despite this, however, companies generally feel uneasy when they embark on programs to use acoustics in their operations because the technology seems complicated and somehow harder to “get a handle on” than it is in other cases. But the issues of product sound, and the benefits of acoustics on a diagnostic tool are too important to ignore, so in this paper we discuss these issues in a “20 questions” format to help planners, engineers and managers as they proceed to implement acoustical technology in their organizations.
Technical Paper

24SIAT-0900: Heavy Duty Vehicle Aftertreatment Technologies for the Future: What May Be Required at BSVII?

2024-01-16
2024-26-0149
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII.
Technical Paper

4 x 4 Highway Tractor Concepts

1972-02-01
720901
Two new 4 X 4 drivetrain systems have been developed for highway tractors that are used to pull multiple trailer combinations. The first one is a 4 X 2 that automatically becomes a 4 X 4 when conditions exist that require 4 X 4 operation. The second one is a full-time 4 X 4 that proportions the drive torque 36% to the front axle and 64% to the rear axle. A unique front driving steering axle has also been developed that permits a 4 X 4 system to be installed in a standard 4 X 2 truck. There is no need to relocate any major components to make space available for a front driving steering axle.
Technical Paper

A Case Study for Evaluating Pantograph Based Charging Systems for Electric Bus

2022-10-05
2022-28-0044
In the recent years, Electric-mobility has been a trending aspect in the transportation sector. Increase in the air pollution by the use of combustion vehicles resulted in the initiation of various subsidiaries and norms by the governments across the world. To bring an eco-friendly transportation, many cities across the world are trying to incorporate the electric vehicles in the public transportation system. In India, State Road Transport Undertakings (SRTU’s) have started adopting electric buses. One of the critical requirement for successful operation of electric vehicles is charging infrastructure, which is required for charging the vehicles. There are various charging technologies available in the industry. This paper presents a case study for evaluating pantograph based electric bus charging systems for Patna project and compares the charging schedule, charger infrastructure sizing, CAPEX and OPEX with respect to traditional proven CCS2 charging technology.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Comparison of the Regulatory Approval Process for Vehicles and Off-road Machines in the EU: ‘e-mark’ and ‘CE-mark’

1999-09-14
1999-01-2837
Regulatory requirements in the European Union (EU) for off-road machines and road vehicles are different. Vehicles which transport passengers and goods, along with attached trailers, as well as road motorcycles must meet EEC type-approval requirements. All other types of self-propelled machines must meet the requirements of the Machinery Directive (Council Directive 98/37/EC), and the Electromagnetic Compatibility (EMC) Directive (Council Directive 89/336/EEC) and possibly other directives. This includes such categories as agriculture and forestry machines, construction machines, industrial trucks and similar products. The various directives outline the different processes for demonstrating compliance with the EU requirements. The intent of this paper is to summarize a few of the requirements that are of interest to off-highway equipment manufacturers and to identify some sources of information about the regulatory requirements.
Technical Paper

A Concept of Aftermarket Support

1987-11-01
872014
In today's world economic environment, the probability for increased product opportunity for any given company is diminishing because we are faced with a maturing world marketplace. Much of the demand for product will come from users who replace existing products with improved and advanced state-of-the-art products that can perform utilitarian services at a more efficient and economic cost. Although advanced design concepts and improved application of engineering principles have resulted in more reliable and longer life product, there still remains a strong need to keep these products performing to meet the level of user expectation.
Technical Paper

A Corporate Product Quality Assurance Program

1983-09-12
831351
This paper outlines what a large company is doing on a corporate staff basis to help combat Product Liability problems. Eaton Corporation is multi-national and serves a variety of markets. The extensive and complex line of products dictates the need for a well organized, corporate Product Assurance Program. The program is made up of five thrusts: 1) Corporate Policy, 2) Guidelines, 3) Divisional Committees, 4) Surveys and 5) Training. Utilizing a product development project, the implementation of several elements of Product Quality Assurance are explained. The program was designed for flexibility and emphasizes the chairman's motto to “DO IT RIGHT THE FIRST TIME, EVERY TIME.”
Technical Paper

A Design for Six Sigma Approach to Optimize a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness

2011-04-12
2011-01-0720
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
Technical Paper

A Discussion of the Performance Evaluation of Time Synchronization Algorithms for Networked Control Systems by Means of Model and Simulation

2014-09-30
2014-36-0382
With the growing complexity and integration of systems as satellites, automobiles, aircrafts, turbines, power controls and traffic controls, as prescribed by SAE-ARP-4754A Standard, the time de-synchronization can cause serious or even catastrophic failures. Time synchronization is a very important aspect to achieve high performance, reliability and determinism in networked control systems. Such systems operate in a real time distributed environment which frequently requires a consistent time view among different devices, levels and granularities. So, to guarantee high performance, reliability and determinism it is required a performance evaluation of time synchronization of the overall system. This time synchronization performance evaluation can be done in different ways, as experiments and/or model and simulation.
Technical Paper

A Drag-Reduction Prediction Model for Truck Platoons

2024-04-09
2024-01-2548
Truck platooning is an emerging technology that exploits the drag reduction experienced by bluff bodies moving together in close longitudinal proximity. The drag-reduction phenomenon is produced via two mechanisms: wake-effect drag reduction from leading vehicles, whereby a following vehicle operates in a region of lower apparent wind speed, thus reducing its drag; and base-drag reduction from following vehicles, whereby the high-pressure field forward of a closely-following vehicle will increase the base pressure of a leading vehicle, thus reducing its drag. This paper presents a physics-guided empirical model for calculating the drag-reduction benefits from truck platooning. The model provides a general framework from which the drag reduction of any vehicle in a heterogeneous truck platoon can be calculated, based on its isolated-vehicle drag-coefficient performance and limited geometric considerations.
Technical Paper

A Field Performance Prediction Technique for Light Truck Structural Components

1979-02-01
791034
A method has been developed which allows prediction of the field performance of structural components based on prototype vehicle test procedures and results. Component designs can then be optimized by selecting prototype durability test objectives which more accurately reflect actual field usage. This procedure, which is based on fatigue damage calculations from component strain histories, has been successfully applied to non-safety related body, frame and suspension structural components of light trucks and vans.
Technical Paper

A Flexible Hydraulic System for a Self-Propelled Forage Harvester

1985-11-01
851092
A new hydraulic system was developed using off-the-shelf components to gain lower effort steering, push-button machine function controls, and improved reliability. The ability to alter or add to the system (flexibility) is a requirement. The hydraulic control requirements for this vehicle are similar to other self-propelled machines. The inherent flexibility of this system may make it adaptable, at least in part, to other vehicles.
Technical Paper

A Framework for Reliable and Durable Product Design

1996-08-01
961794
In this paper, a simplified and systematic approach to integrate reliability and durability aspects in design process is presented. A six step process is explained with the help of examples. Two alternatives for gathering means and standard deviations for key parameters are discussed. First a DOE approach based on orthogonal arrays is presented. Second approach is based on Taylor Series expansion. An example of beam design is solved with both of these approaches. The Second example also considers the degradation with time in service.
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
Technical Paper

A Functional Brake Architecture for Autonomous Heavy Commercial Vehicles

2016-04-05
2016-01-0134
Heavy commercial vehicles constitute the dominant form of inland freight transport. There is a strong interest in making such vehicles autonomous (self-driving), in order to improve safety and the economics of fleet operation. Autonomy concerns affect a number of key systems within the vehicle. One such key system is brakes, which need to remain continuously available throughout vehicle operation. This paper presents a fail-operational functional brake architecture for autonomous heavy commercial vehicles. The architecture is based on a reconfiguration of the existing brake systems in a typical vehicle, in order to attain dynamic, diversified redundancy along with desired brake performance. Specifically, the parking brake is modified to act as a secondary brake with capabilities for monitoring and intervention of the primary brake system.
Technical Paper

A Fuzzy System to Determine the Vehicle Yaw Angle

2004-03-08
2004-01-1191
The reproduction of the vehicle motion is a crucial element of accident reconstruction. Apart from the position of the center of gravity in an inertial coordinate system, the vehicle heading plays an important role. The heading is the sum of the yaw angle and the vehicle body side slip angle. In standard vehicles, the yaw angle can be determined using the yaw rate sensor and the wheel speeds. However, the yaw rate sensor is often subject to temperature drift. The wheel speed signals are forged at low speeds or due to slip. These errors result in significant deviations of reconstructed and real vehicle heading. Therefore, an intelligent combination of these signals is required. This paper describes a fuzzy system which is capable to increase the accuracy of yaw angle calculation by means of fuzzy logic. Before the data is applied to the fuzzy system, it is preprocessed to ensure the accuracy of the fuzzy system inputs.
X