Refine Your Search

Search Results

Viewing 1 to 7 of 7
Book

Aluminum Auto-Body Joining

2015-11-11
Fusing aluminum in a multi-material lightweight vehicle is presented via studies on joining dissimilar materials, joining methods, and the performance of the joined materials. The use of aluminum offers a material that embodies properties to meet new standards as the automotive industry continues to pursue improvements in fuel efficiency and emissions. Aluminum’s strength, light weight, and corrosion resistance offers manufacturers a material alternative to steel and an additional material, which has long been known in the industry, to be employed in automotive construction. Topics of technical interest include: • Forming • Galvanic Corrosion • Welding, Fastening, Bonding • Maximizing Weight Benefits Production of strong, lightweight structures will contribute significantly to automobile manufacturers meeting mandated fuel economy standards, as well as customer preferences for utility, comfort, and safety.
Book

Automated/Mechanized Drilling and Countersinking of Airframes

2013-05-07
Modern aircraft manufacturing involves drilling and countersinking hundreds of thousands to millions of holes. Doing this work by hand accounts for 65% of the cost of airframe assembly, 85% of the quality issues, and 80% of the lost time due to injuries. Automated drilling and countersinking replaces traditional hand methods and involves using numeric control machinery to drill and countersink a finished hole “one shot” (drilling a finished hole without using pilot holes or tool changes). This is a proven cost reducing technology that improves quality where it has been applied successfully. The focus of this book is on automating the process of drilling and countersinking holes during airframe manufacturing.
Technical Paper

Enabling Expanded Aerospace Automation Using Tactile Cognition Analytics

2019-03-19
2019-01-1360
Aerospace assembly operations are still highly dependent on human labor and processes. This paper will describe and illustrate the transformational technologies that will enable replication of the human cognitive (in context) textural ability to assemble airplane and space structure. The paper will also provide use case examples where these innovative technologies have been applied successfully. Without context, data are just dots, floating around without meaning. With context data becomes an enlightened component of knowledge that brings value to information. In-context enlightened knowledge provides manufacturing visibility within factory operations. Visibility is a key component of the Smart, Brilliant, or Intelligent Factory.
Book

Innovations in Automotive and Aerospace Assembly

2018-03-23
Up until the last two decades, aluminum in airplanes and steel in automobiles were the primary materials used to produce these two complex machines. These metal-to-metal assemblies, and specifically the same-type metal-to-metal assemblies, have resulted in distinct manufacturing process advantages over decades of production. However, advances in material types have driven manufacturing to adapt and align the fabrication and assembly processes to continue to facilitate a quality product that is reliable, can be manufactured at a price point that is affordable and be manufactured in quantities that can be widely distributed. Dissimilar metal and composite material assemblies are now requiring highly complex manufacturing processes. Innovations in Automotive and Aerospace Assembly addresses how these new, disruptive materials usage are changing the manufacturing and production processes for the transportation industries.
Technical Paper

Non-Contact Measurement of Aerospace Fastener Holes, Using Ring Laser Adaptive Optics

2015-09-15
2015-01-2497
The introduction of composite materials onto air vehicles has complicated the traditional hole/countersink assessment criteria due its finished-part thickness variability; softer and dissimilar properties than the metallic substructure where it is mounted and attached; and the increased attention to other acceptance criteria such as fiber tear, fiber pull, and moisture propagation in the hole that degrades fastener capability. The addition of composite materials further complicates the assembly process by adding a boundary layer of liquid shim or sealant between the composite piece (usually a skin) and the substructure. Current hole inspection systems are absent the ability to assess the interior condition of the composite hole such as fiber tear, damage to the liquid shim, and debris or burrs between the multiple stacks of dissimilar material.
Book

The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Assembly

2019-05-28
The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Factory defines the architecture, key building blocks, and roadmap for actualizing a future airplane factory (FAF) that is digitally optimized for intelligent airplane assembly. They fit and integrate with other FAF building blocks that aggregate to a Digitally Optimized Intelligent Airplane Factory (DOIAF). The word "intelligent" refers to the ability of a system to make right decisions and take right action in the highly dynamic and fluid environment of the modern airplane manufacturing space. The event-driven dynamics inherent in the complexity of this environment drive the need for expert knowledge which resides in intelligence systems incorporating the experience of experts. Expert knowledge need not be smart, brilliant, or possess genius as long as the outcomes are derived from right decisions resulting in right actions-applied rapidly to sustain an optimized factory enterprise.
X