Refine Your Search

Topic

Author

Search Results

Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

A Comprehensive Study on Different System Level Engine Simulation Models

2013-04-08
2013-01-1116
Engine simulation can be performed using model approaches of different depths in capturing physical effects. The present paper presents a comprehensive comparison study on seven different engine models. The models range from transient 1D cycle resolved approaches to steady-state non-dimensional maps. The models are discussed in the light of key features, amount and kind of required input data, model calibration effort and predictability and application areas. The computational performance of the different models and their capabilities to capture different transient effects is investigated together with a vehicle model under real-life driving conditions. In the trade-off field of model predictability and computational performance an innovative approach on crank-angle resolved cylinder modeling turned out to be most beneficial.
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
Technical Paper

A Flexible Engine Control Architecture for Model-based Software Development

2007-04-16
2007-01-1623
The fierce competition and shifting consumer demands require automotive companies to be more efficient in all aspects of vehicle development and specifically in the area of embedded engine control system development. In order to reduce development cost, shorten time-to-market, and meet more stringent emission regulations without sacrificing quality, the increasingly complex control algorithms must be transportable and reusable. Within an efficient development process it is necessary that the algorithms can be seamlessly moved throughout different development stages and that they can be easily reused for different applications. In this paper, we propose a flexible engine control architecture that greatly boosts development efficiency.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

A Modular Gasoline Engine Family for Hybrid Powertrains: Balancing Cost and Efficiency Optimization

2020-04-14
2020-01-0839
The electrification of the powertrain is a prerequisite to meet future fuel consumption limits, while the internal combustion engine (ICE) will remain a key element of most production volume relevant powertrain concepts. High volume applications will be covered by electrified powertrains. The range will include parallel hybrids, 48V- or High voltage Mild- or Full hybrids, up to Serial hybrids. In the first configurations the ICE is the main propulsion, requiring the whole engine speed and load range including the transient operation. At serial hybrid applications the vehicle is generally electrically driven, the ICE provides power to drive the generator, either exclusively or supporting a battery charging concept. As the ICE is not mechanically coupled to the drive train, a reduction of the operating range and thus a partial simplification of the ICE is achievable.
Technical Paper

A Real-Time Capable and Modular Modeling Concept for Virtual SI Engine Development

2020-04-14
2020-01-0577
Spark Ignited (SI) combustions engines in combination with different degrees of hybridization are expected to play a major role in future vehicle propulsion. Due to the combustion principle and the related thermodynamic efficiency, it is especially challenging to meet future CO2 targets. The layout and optimization of the overall system requires novel methods in the development process which feature a seamless transition between real and virtual prototypes. Herein, engine models need to predict the entire engine operating range in steady-state and transient conditions and must respond to all relevant control inputs. In addition, the model must feature true real-time capability. This work presents a holistic and modular modeling framework, which considers all relevant processes in the complex chain of physical effects in SI combustion.
Technical Paper

A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock

2015-01-14
2015-26-0213
In the present work, a scalable simulation methodology is presented that enables the assessment of the impact of SI-engine cycle-to-cycle combustion variations on fuel consumption and hence CO2 emissions on three different levels of modeling depth: in-cylinder, steady-state engine and transient engine and vehicle simulation. On the detailed engine combustion chamber level, a 3D-CFD approach is used to study the impact of the turbulent in-cylinder flow on the cycle-resolved flame propagation characteristics. On engine level, cycle-to-cycle combustion variations are assessed regarding their impact on indicated mean effective pressure, aiming at estimating the possible fuel consumption savings when cyclic variations are minimized. Finally, on the vehicle system level, a combined real-time engine approach with crank-angle resolved cylinder is used to assess the potential fuel consumption savings for different vehicle drivecycle conditions.
Technical Paper

A Three-Pillar Framework for Model-Based Engine Control System Development

2007-04-16
2007-01-1624
This paper presents a comprehensive Matlab/Simulink-based framework that affords a rapid, systematic, and efficient engine control system development process including automated code generation. The proposed framework hinges on three essential pillars: 1 ) an accurate model for the target engine, 2) a toolset for systematic control design, and 3) a modular system architecture that enhances feature reusability and rapid algorithm deployment. The proposed framework promotes systematic model-based algorithm development and validation in virtual reality. Within this context, the framework affords integration and evaluation of the entire control system at an early development stage, seamless transitions across inherently incompatible product development stages, and rapid code generation for production target hardware.
Technical Paper

A holistic Development Method Based on AVL FRISC as Enabler for CO2 Reduction with Focus on Low Viscosity Oils

2020-04-14
2020-01-1060
To achieve future fleet CO2 emission targets, all powertrain types, including those with internal combustion engines, need to achieve higher efficiency. Next to others the reduction of friction is one contributor to increase powertrain efficiency. The piston bore interface (PBI) accounts for up to 50 % of the total engine friction losses [1]. Optimizations in this area combined with the use of low viscosity oil, which can reduce the friction of further engine sub-systems, will therefore have a high positive impact. To assess the friction of the PBI whilst considering cross effects of other relevant parameters for mechanical function (e.g. blow-by & wear) and emissions (e.g. oil consumption) AVL has established a holistic development method based around the AVL FRISC (FRIction Single Cylinder) engine with a floating liner measurement concept.
Technical Paper

An Engineering Method for Part-load Engine Simulation

2007-10-29
2007-01-4102
This work provides an effective engineering method of building a part-load engine simulation model from a wide-open throttle (WOT) engine model and available dynamometer data. It shows how to perform part-load engine simulation using optimizer for targeted manifold absolute air pressure (MAP) on a basic matrix of engine speed and MAP. Key combustion parameters were estimated to cover the entire part-load region based on affordable assumptions and limitations. Engine rubbing friction and pumping friction were combined to compare against the motoring torque. The emission data from GM dynamometer laboratory were used to compare against engine simulation results after attaching the RLT sensor to record emission data in the engine simulation model.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

An Investigation into the Effect of Fuel Injection System Improvements on the Injection and Combustion of DiMethyl Ether in a Diesel Cycle Engine

2014-10-13
2014-01-2658
For nearly twenty years, DiMethyl Ether has been known to be an outstanding fuel for combustion in diesel cycle engines. Not only does it have a high Cetane number, it burns absolutely soot free and produces lower NOx exhaust emissions than the equivalent diesel. However, the physical properties of DME such as its low viscosity, lubricity and bulk modulus have negative effects for the fuel injection system, which have both limited the achievable injection pressures to about 500 bar and DME's introduction into the market. To overcome some of these effects, a common rail fuel injection system was adapted to operate with DME and produce injection pressures of up to 1000 bar. To understand the effect of the high injection pressure, tests were carried out using 2D optically accessed nozzles. This allowed the impact of the high vapour pressure of DME on the onset of cavitation in the nozzle hole to be assessed and improve the flow characteristics.
Technical Paper

Analysis of Engine Dynamics Under Transient Run-Up Conditions

2004-03-08
2004-01-1454
The target of dynamic simulation is to investigate complex engine dynamic behavior in the whole speed range under different loading conditions in the most effective way during Engine Development Process (EDP). AVL has developed a method for transient run-up analysis by using the simulation tool AVL EXCITE. The main objective of this new method is the controlled speed increase by defining a speed ramp. Transient run-up analysis is of interest for different kind of analysis during the EDP, such as crankshaft dynamics and strength, low frequency vibration analysis, bracket strength and durability analysis, acoustic analysis, etc. By using this method the time required for simulations and thus the whole project duration is significantly reduced. Conventionally the speed range is divided in single speed steps and for each speed a separate transient simulation has to be performed. The number of these simulations depends on the required speed resolution.
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-04-16
2007-01-0267
During a new engine development program, or the adaptation of an existing engine to new platform architectures, testing is performed to determine the durability characteristics of the basic engine structure. Such testing helps to uncover High Cycle durability-related issues that can occur at the bulkhead walls as well as cap bolt thread areas in an aluminum cylinder block. When this class of issues occurs, an Elastohydrodynamic (EHD) bearing simulation capability is required. In this study, analytical methods and processes are established to calculate the localized distributed load on the bulkhead. The complexity in performing a system analysis is due to the nonlinear coupling between the bearing hydrodynamic pressure distribution and the crankshaft and block deformation. A system approach for studying the crankshaft-block interaction requires a crankshaft flexible body dynamics model, an engine block assembly flexible body dynamics model and a main bearing lubrication model.
Technical Paper

CFD for Flow Rate and Air Re-Circulation at Vehicle Idle Conditions

2004-03-08
2004-01-0053
CFD method for the calculation of flow rate and air re-circulation at vehicle idle conditions is described. A small velocity is added to the ambient airflow in order to improve the numerical stability. The flow rate passing through the heat exchangers is insensitive to the ambient velocity, since the flow rate is largely determined by the fan operation. The air re-circulation, however, is quite sensitive to the ambient air velocity. The ambient velocity of U=-1m/s was found to be the more critical case, and is recommended for the air re-circulation analysis. The CFD analysis can also lead to design modifications improving the air re-circulation.
Technical Paper

CFD-based Robust Optimization of Front-end Cooling Airflow

2007-04-16
2007-01-0105
Development and integration of the cooling system for an automotive vehicle requires a balancing act between several performance and styling objectives. The cooling system needs to provide sufficient air for heat rejection with minimal impact on the aerodynamic drag, styling requirements and other criteria. An optimization of various design parameters is needed to develop a design to meet these objectives in a short amount of time. Increase in the accuracy of the numerical predictions and reduction in the turn-around time has made it possible for Computational Fluid Dynamics (CFD) to be used early in the design phase of the vehicle development. This study shows application of the CFD for robust design of the engine cooling system.
Technical Paper

CFRM Concept at Vehicle Idle Conditions

2003-03-03
2003-01-0613
The concept of condenser, fan, and radiator power train cooling module (CFRM) was further evaluated via three-dimensional computational fluid dynamics (CFD) studies in the present paper for vehicle at idle conditions. The analysis shows that the CFRM configuration was more prone to the problem of front-end air re-circulation as compared with the conventional condenser, radiator, and fan power train cooling module (CRFM). The enhanced front-end air re-circulation leads to a higher air temperature passing through the condenser. The higher air temperature, left unimproved, could render the vehicle air conditioning (AC) unit ineffective. The analysis also shows that the front-end air re-circulation can be reduced with an added sealing between the CFRM package and the front of the vehicle, making the CFRM package acceptable at the vehicle idle conditions.
X