Refine Your Search

Topic

Author

Search Results

Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

An Integrated Test Facility for Suspension Dampers of Commercial Vehicle

2018-04-03
2018-01-1383
In the present scenario, delivering the right product at the right time is very crucial in automotive sector to grab the competitive advantage. In the development stage, validation process devours most of the product development time. This paper focuses on reducing the validation time for damper (shock absorber) variants which is a vital component in commercial vehicle suspension system. New test facility is designed for both performance test and endurance testing of six samples simultaneously. In addition, it provides force trend monitoring during the validation which increases the efficiency of test with an enhanced control system. This new facility is also designed to provide side loading capability for individual dampers in addition to the conventional axial loading. The key parameter during validation is control of damper seal temperature within the range of 70-90°C. A cooling circuit is designed to provide an efficient temperature control by re-circulating cold water.
Technical Paper

An Statistical Energy Analysis (SEA) based Methodology for Sound Package Optimization for Commercial Vehicles

2013-01-09
2013-26-0104
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Technical Paper

Composite Gas Cylinders for Automotive Vehicles - Current Status of Adoption of Technology and Way Forward

2013-01-09
2013-26-0074
With increasing concern on energy security and energy efficiency, automobile industry has been conducting many research on technologies aimed at reducing weight and reducing fuel consumption thereby reducing carbon footprint of the vehicle without compromising safety, efficiency and operational ability. Alternative fuel vehicles such as Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), Hydrogen, Hydrogen-CNG (HCNG) blends and Liquefied Natural Gas (LNG) vehicles are some of the best solutions to minimize the dependence on fossil fuels which are depleting fast. Gas cylinders are the heavier portion of alternative fuel systems which adds more weight to vehicle unladen weight. In search of innovative materials for gas cylinders, composite materials have been the front runner in reducing weight of the vehicle, thereby reducing fuel consumption significantly.
Technical Paper

Cost effective and Sustainable Alternate Material for Air Brake Tubings (ABT) in Commercial Vehicles

2014-09-30
2014-01-2409
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time.
Technical Paper

Data Acquisition and Failure Simulation of Metal Bumper for Heavy Commercial Vehicle

2017-03-28
2017-01-0381
This abstract work describes a method of data acquisition and validation procedure followed for a metal bumper used in commercial vehicle application. Covariance is considered as major phenomenon for repeatable measurements in proving ground data acquisition and it is to be maintained less than 0.05. In this project covariance of data acquisition is analyzed before physical simulation of acquired data. In addition to that, multiple testing conditions like uni-axial and bi-axial testing were carried out to attain the failure. PG data is used for bi-axial vibration test and conventional constant spectrum signal (CSD signal) is used for uni-axial vibration test. Target duration for uni-axial test (Z direction) was arrived using pseudo damage calculation. Strain gauges were installed in failure locations to compare PG data and rig data as well as to calculate strain life. Failures were simulated in bi-axial vibration test.
Technical Paper

Design and Development of Front Air Suspension for Front Engine Bus with Floor at Entry Plus One Step

2012-09-24
2012-01-1934
The automotive industry is heading towards introduction of newer and newer technology aimed at providing better comforts and value to the end user. The public/ private transport vehicles in urban/rural areas with FE has wide level of acceptance in South East Asian countries. The acceptance of FE buses is mainly because of the ram air cooling of the engine, lesser maintenance, higher fuel efficiency etc whereas rear engine buses with entry plus one step are deprived of these benefits. Hence, we have designed and developed a new Front Engine Semi -Low Floor bus having floor at E+1 step. The primary design challenge was to meet the uniform floor throughout the length of the vehicle. This uniqueness will help in easy ingress and egress of the passengers which helps in reducing the turn around rime of the vehicle. Other challenges includes, meeting the customer requirements in terms of application, load and duty cycle for this new design.
Technical Paper

Development of a Specific Durability Test Cycle for a Commercial Vehicle Based on Real Customer Usage

2013-01-09
2013-26-0137
Every class of commercial vehicle has an entirely different usage pattern based on customer application and needs. To perform accurate durability testing, these prototypes should run on real customer usage locations and loading conditions for the target life. However, this is time consuming and not practical, hence resulting in Proving Ground (PG) testing. It is also known that a standard PG durability cycle cannot be valid for every class of vehicle and every application. So a statistical approach was followed to develop an accelerated durability test cycle based on in-house PG test surfaces in order to match the real customer usage to the durability target life. This paper summarizes the methodology to develop Durability Validation test cycles for commercial vehicle based on the work carried out on a heavy duty tipper and an intermediate commercial vehicle.
Technical Paper

Driveline Optimization to Reduce the Noise in 4X4 Heavy Commercial Vehicle

2020-09-15
2020-01-2246
One of the important factors strongly required by customers nowadays is lower noise and vibration in vehicle. In this paper the prime focus is made on the study of effect of driveline angles on the noise and vibration behavior in a 4X4 configuration commercial vehicle. The impact of propeller shaft angles in the transfer of driveline excitations to the transmission and the resulting noise and vibration is studied. An abnormal noise was perceived from transmission and the root cause was investigated for the same. These excitations were high due to the higher driveline angles as this was design requirement to maintain higher ground clearance. A two-stage approach was adopted to modify the effect (transmission) and cause (propeller shaft angle) there by reducing the abnormal noise and vibration perceived in the vehicle.
Technical Paper

Durability Enhancement of Spring Seat in Bogie Suspension

2013-11-27
2013-01-2848
Spring seat plays major role in bogie suspension; which is guiding and controlling the leaf spring for better suspension and also to withstand the compressive load from leafs. Currently used spring seats are failing frequently in medium and heavy duty vehicles, which lead to customer concerns by higher idle time and part replacement cost. Thickness of the spring seat can't be increased by large extent due to packaging constraints in the vehicle. Stress levels identified by FEA method are found higher than the current material capacity. With these constraints, the spring seat has been re-designed with improved strength and ductility of material by modern technology - Austempered Ductile Iron (ADI). The parts have been developed and assembled in various tipper applications and performance was studied. The developed spring seat shows five times superior durability compare to existing design.
Technical Paper

Durability Test Sequence and Target Generation for Variants among Commercial Vehicles

2013-09-24
2013-01-2377
Based on customer application and loading condition, each Commercial Vehicle model has an entirely different usage pattern. To perform accurate durability validation, each vehicle model prototype should run on actual customer usage locations and loading conditions for the durability target kilometers. But it is time consuming and not practical. So a statistical approach is followed to generate the accelerated durability test sequence and target on in-house Proving Ground tracks to match the real customer usage for the durability target kilometers. Again a single durability test sequence and target cannot be followed for all vehicle models due to the variability in customer usage. For that, specific durability test sequence and target need to be established for every class of commercial vehicle. This paper summarizes the methodology to develop Durability test sequence and target for commercial vehicle based on the work carried out on variants of medium and heavy duty trucks.
Technical Paper

Empirical Study of Vehicle Parameters and Optimization for Roll, Pitch, Bounce and Dive Behavior on Commercial Vehicles

2010-04-12
2010-01-0392
The primary factors influencing vehicle's dynamic behavior are the vehicle hard point definition, driver behavior and road inputs. The more the latter two are random and incorrigible in nature, the former one is quantifiable and can be controlled from designer's standpoint. In this paper, we have made an attempt to set targets to the vehicle hard point definition and thereby to optimize the vehicle for better ride behavior. This approach hence helped to converge to vehicle specifications set fundamentally designed to respond to random operating conditions and driving behavior intelligently. The work also involves study of various methodologies to predict roll, pitch, bounce and dive behaviors on a typical commercial passenger vehicle and is concluded by a sensitivity analysis to understand significance of these hard points on vehicle's real time behavior.
Technical Paper

Evaluation of Truck Driver Safety in Various Crash Scenarios

2013-01-09
2013-26-0029
Driver safety is one of the key considerations in truck design and development. Virtual simulation offers opportunities to reduce development time and the number of physical prototypes consumed for design verification and validation for safety parameters. Thus, the application of virtual simulations of crash has become an integral part of the vehicle development process. The continuously emerging scenarios involving challenging test requirements can only be tested by means of virtual simulation techniques. This paper presents simulations that are performed to verify various safety aspects to ensure crashworthiness of the truck cabin. The cabin structure was evaluated for various national/international safety regulations. The FE model and simulation methodology was validated through physical testing and correlated for frontal impact test and roof strength test as per AIS 029/ECE R29. Analysis performed to ensure compliance to upcoming regulation ECE R29 Revision 03 is also discussed.
Technical Paper

Interior Noise Refinement in an ICV Bus through Driveline Torsional Vibration Analysis

2018-06-13
2018-01-1472
With a push for urbanization across cities, there is an increased demand for mobility in public transportation especially buses which are provided through state transport undertakings. Hence, the expectations of this class of vehicles will be high in terms of quality and comfort to the passengers. The noise inside the passenger area of the bus becomes an important parameter, which sets apart a bus manufacturer from its competitors. The driveline of the bus is the system responsible for the transfer of power from engine to the wheels. The noise and vibration problems associated with it are detected only in the late stages of the design chain, when all its elements are tested together over a wide range of conditions. Since, calibration of engine and the selection of transmission is freezed in early stages, satisfying power and torque requirements, the only viable option left to address the problem is by optimizing the clutch parameters.
Technical Paper

Manufacturing Execution System for Process Improvement

2009-10-06
2009-01-2855
In an era of global manufacturing and reduced costs, it is imperative that the manufacturing floor is visible to top management in a boardroom to enable them to make key decisions. Manufacturing Execution System (MES) is a method of connecting the shop floor to the top floor covering the complete gamut of activities from production sequence to finished goods. It aims to reduce the delay in transmitting production related data by linking the Production environment, Quality management, IT systems and Delivery. At Ashok Leyland’s Commercial Vehicle manufacturing facility in Ennore, India, an engine and axle components machine shop have been networked and data pertaining to production of Cylinder Block, Cylinder Head, Camshaft, Crankshaft, Axle Arm and Axle Beam components are accessible from anywhere in the company irrespective of location.
Technical Paper

Multi-Axis Simulation Test for Two-Wheeler Carrier Structure of a Commercial Vehicle Using Accelerated Road Load Data

2017-03-28
2017-01-0218
In the present scenario, delivering right product at the right time is very crucial in automotive sector. Today, most of the OEMs have started to produce FBS (Fully Build Solution) such as oil tankers, mining tippers and two-wheeler carriers based on the market requirements. During product development phase, all automotive components undergo stringent validation protocol either in on-road or laboratory which consumes most of the product development time. This project is focused on developing validation methodology for two-wheeler carrier structure (deck) of a commercial vehicle. For this, road load data were acquired in the typical routes of customers at different loading conditions. Roads were classified as either good or bad based on the axle acceleration. To shorten the test duration, actual road load data was compressed using strain based damage editing techniques. The spectrum and transmissibility of acceleration signals at the decks were analyzed to select a deck for validation.
Technical Paper

Numerical Simulation and Experimental Validation of an Engine Oil Sump for Improved Noise Characteristics

2017-06-05
2017-01-1801
Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid. This paper discusses on the capability of numerical approach in predicting the oil sump modal characteristics with fluid-structure interaction and consequent verification with experimental modal test results.
Technical Paper

Optimization of Proving Ground Durability Test Sequence Based on Relative Damage Spectrum

2018-04-03
2018-01-0101
In competitive vehicle market, the product must be designed and validated in shorter time span without compromising the quality. The durability of the vehicle is tested either by on road trials undertaken at the actual customer supplication sites for large time period or in the accelerated rough surfaces called “Proving ground” to validate in shorter time span. Accelerated proving ground durability testing plays a vital role in enabling shorter product development cycles by simulating the road load influences alone from the actual field conditions. It is imperative to simulate the test vehicle at proving ground (PG) testing such that it replicates the same damage that occurs in the field due to road loads. PG validation requires a specific durability test sequence for every segment of commercial vehicles due to different customer usage applications and terrain conditions. This diversity in applications and terrains induce structural damage at different range of frequencies.
Technical Paper

Prognosis of Engine Failure Based on Modelling by Using Live Parameter Data from Vehicle

2024-01-16
2024-26-0266
In the commercial vehicle business, vehicle availability is a pivotal factor for the profitability of the customer. Nonetheless, the intricate nature of the technologies embedded in modern day engines and exhaust after-treatment systems coupled with the variability of the duty cycles of end applications of the vehicles imposes added challenges on the vehicle's sustained performance and reliability. In this context, the ability to predict potential failures through tools like telematics and real-time data analytics presents a significant opportunity for original equipment manufacturers (OEMs) to deliver distinctive value to their customers.
Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
X