Refine Your Search

Topic

Search Results

Technical Paper

Adoption of Floating Seat in a Vehicle to Reduce Seat Vibration

2015-04-14
2015-01-1122
Seat vibration when a vehicle is idling or in motion is an issue in automobile development. In order to reduce this vibration, dynamic damper or inertia mass is widely used. These countermeasures increases vehicle's weight and causes bad fuel-efficiency. Some new ways to reduce the vibration without weight increase are needed. One of that is the floating seat. Seat vibration has been reduced by controlling seat resonance frequencies. In order to control resonance frequency, the structures of the seat-mounting unit are replaced with floating structures using rubber bushings. It was demonstrated that partially replacing the mounting unit with floating structures makes it possible to control the resonance frequencies of the entire seat. The issue of balancing vibration reduction with strength and durability and crash safety performance caused by the fitting of rubber bushings to the seat-mounting unit was addressed using stopper structures optimized for each type of input.
Journal Article

Both-Sides Welding Technology for Resin Fuel Tubes

2016-04-05
2016-01-0506
This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
Journal Article

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile Strength of 1180 MPa

2021-04-06
2021-01-0308
The superior formability and local ductility of the emerging class of third generation of advanced high-strength steels (3rd Gen AHSS) compared to their conventional counterparts of the same strength level offer significant advantages for automotive lightweighting and enhanced crash performance. Nevertheless, studies on the material behavior of 3rd Gen AHSS have been limited and there is some uncertainty surrounding the applicability of developed methodologies for conventional dual-phase (DP) steels to this new class of AHSS. The present paper provides a comprehensive study on the quasi-static and dynamic constitutive behavior, formability characterization and prediction, and the fracture behavior of two commercial 3rd Gen AHSS with an ultimate strength of 1180 MPa that will be contrasted with a conventional DP1180. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then validated with 3-D simulations of tensile tests.
Technical Paper

Control of a Brushless PM Traction Drive Following a Winding or Power Semiconductor Failure

2004-03-08
2004-01-0568
The paper considers the implications of typical faults on the operation and control of a permanent magnet (PM) traction drive. The discussion is illustrated with analyses and test results taken from a vector controlled, imbedded magnet design of PM motor that has been prototyped for a future fuel cell powered mid size car. In particular the paper describes the outcome of an experimental investigation where a series of representative faults have been imposed on the prototype machine. The impact of the various faults and the subsequent fault control on the drive system are presented in terms of braking torque, and maximum current requirements.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2007-04-16
2007-01-0436
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 7 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to the FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline IC-powered vehicles. The document is currently being updated to clarify and update requirements so that the document will continue to be relevant and useful in the future. In addition to developing draft revisions to SAE J2578, the working group has updated SAE J1766 and is developing a new recommended practice on vehicular hydrogen systems (SAE J2579). The documents are written from the standpoint of systems-level, performance-based requirements. A risk-based approach was used to identify potential electrical and fuel system hazards and provide criteria for acceptance.
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2010-04-12
2010-01-0131
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 10 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards associated with the integration of hydrogen and electrical systems onto the vehicle and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. An update to SAE J1766 for post-crash electrical safety was also published in 2008 to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to SAE J2578 and J1766, the SAE FCV Safety Working Group also developed a Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Development of New Powertrain System for the Global Deployment of Hybrid Vehicles

2023-04-11
2023-01-0479
A new hybrid system has been developed to increase the permissible system weight and raise dynamic performance/system efficiency for the global rollout of Honda's electric vehicles. The powertrain consists of a 2.0L direct injection engine, a Front Drive Unit (FDU) with a built-in traction motor/generator and gear that directly transmit engine torque to the wheels (engine driving gear), a Power Control Unit (PCU) mounted on the FDU, and an Intelligent Power Unit (IPU) mounted under the cargo area. The FDU has a higher RPM (+12%) and higher torque (+6%) traction motor for enhanced launch acceleration performance and maximum vehicle speed settings tailored to regional needs. In addition, a new engine driving gear for low-speed driving has been added to heighten system efficiency by avoiding traction motor driving in low-speed, high-load areas where electrical losses are high, and instead using a driving mode with an engine driving gear (ENGINE MODE).
Journal Article

Development of an Electric-based Power Steering System

2015-04-14
2015-01-1567
In this research, a three degree-of-freedom (DOF) rack-type electric-based power steering (EPS) model is developed. The model is coupled with a three DOF vehicle model and includes EPS maps as well as non-linear attributes such as vibration and friction characteristics of the steering system. The model is simulated using Matlab's Simulink. The vibration levels are quantified using on-vehicle straight-line test data where strain-gauge transducers are placed in the tie-rod ends. Full vehicle kinematic and compliance tests are used to verify the total steering system stiffness levels. Frequency response tests are used to adjust tire cornering stiffness levels as well as the tire dynamic characteristics such that vehicle static gain and yaw natural frequency are achieved. On-center discrete sinusoidal on-vehicle tests are used to further validate the model.
Technical Paper

Effect of Noise Factors on Seizure Limit Performance in Engine Main Bearings

2016-04-05
2016-01-0488
In order to determine the seizure limit of the main bearings of passenger vehicles under actual operating conditions, evaluations were conducted in environments containing noise factors (Various factors which designer cannot adjust and which make function vary were defined as noise factors in this paper.) [1,2] It was shown that noise factors have an effect on seizure limit performance in relation to performance under ideal test conditions (test conditions in which no noise is present). In relation to oil properties, the results showed that a reduction in viscosity as a result of dilution affected seizure limit performance. In relation to the shape of the sliding sections of the test shaft, seizure limit performance declined in a shaft in which the central section was swollen (“convex shaft” below).
Technical Paper

Effects of Blanking Conditions to Edge Cracking in Stamping of Advanced-High Strength Steels (AHSS)

2018-04-03
2018-01-0626
Practical evaluation and reduction of edge cracking are two challenging issues in stamping AHSS for automotive body structures. In this paper, the effects of the shear clearance and shear rake angle on edge cracking were investigated with three different grades of AHSS; TRIP780, DP 980, and DP 1180. Five different shear clearances, between 5% and 25% of material thickness, were applied to the flexible shearing machine to generate samples for the half specimen dome test (HSDT). The shear loads and the shear edge quality were thoroughly characterized and compared. The HSDT created the edge forming limits as compared to the base material forming limit diagram. The load-displacement curve was acquired by the load-cell and the strain distribution was measured using a digital image correlation (DIC) system during the dome test.
Journal Article

Elementary Body Structure Analysis

2015-04-14
2015-01-1321
Recently vehicle development timeline is becoming shorter, so there is an urgent need to be able to develop vehicles with limited resources. This means the efficiency of the body structure development process must be improved. Specifically it is important to reduce the amount of design re-work required to meet performance targets as this can have a large influence on the body development time. In order to reduce the afore mentioned design re-work, we developed simple calculation models to apply a “V-Flow Development Process” to the preliminary stage design of the automobile body structure. The “V-Flow” advantages are as follows: (1) simple and easy to use, (2) defects are found at early stage, (3) avoids the downward flow of the defects. The advantage of preliminary stage design is that there is design flexibility since not many specifications have been determined yet.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Technical Paper

Improved Scratch Resistant Clear Coat for High Gloss Interior

2015-04-14
2015-01-0733
Dark, high gloss decorative finishes (i.e. piano black) are gaining increased application and demand in vehicle interiors; due to interior stylists' desire for this look. One significant concern with this trend is that scratches, and other appearance related defects such as orange peel (waviness), are more apparent to the customer. To address this issue, a highly scratch-resistant 2K clearcoat formulation was developed to minimize visible surface scratches, while also yielding minimal orange peel and exceptional DOI (distinctness of image); all while being applied using typical application techniques in the part finishing market. This output was accomplished by first benchmarking the consumer electronics market for appearance and scratch resistance, and then setting targets through that research.
Technical Paper

Improvement in Washing Efficiency in Windshield Washer

2015-04-14
2015-01-1378
We developed a windshield washer system that enhances washing performance while maintaining low consumption of windshield washer fluid. The system reduces user stress by shortening the amount of time required to remove dirt and maintaining visibility through the windshield. We analyzed the mechanism through which the windshield wiper and windshield washer remove dirt from the glass surface to improve cleaning efficiency. The mechanism consists of a sequence in which the windshield washer fluid splashes down on the glass surface and lifts dirt which is then wiped away by the windshield wiper blade. We defined the amount of windshield washer fluid needed and the time from splashdown to wiping required to lift dirt and wipe it away with the wiper. Based on this mechanism, we developed a wiper arm with built-in washer nozzles.
Journal Article

Independent Left and Right Rear Toe Control System

2014-04-01
2014-01-0063
Honda has developed an “Independent Left and Right Rear Toe Control System” that can achieve stable cornering performance and agile handling. We believe the issue that should be resolved in the next generation of ESC is the expansion of stability and agility into the general operation area. We examined how to accomplish this aim, and control of the independent rear toe angle was decided to be an appropriate method. In addition, a method for mounting the system without using a dedicated suspension was proposed. If left and right toe angles can be controlled independently, toe angle control and normal 4WS control become possible at the same time. In this paper, we will discuss the fundamental principle of independent toe angle control and the system configuration. Also, “INOMAMA Handling” (at driver's will) achieved by this system, as well as the fun and safe driving that are achieved as a result will be shown.
Technical Paper

Life-Cycle Value Assessment (LCVA) of Fuel Supply Options for Fuel Cell Vehicles

2003-03-03
2003-01-0413
The fuel cell vehicle (FCV) has the potential to revolutionize the world's transportation systems. As choices are made on sources of fuel for FCVs it is important to consider the life-cycle implications of each option or system. This paper summarizes the methodology and results of a joint initiative to evaluate the life-cycle performance of 72 vehicle and fuel scenarios in 3 Canadian cities, comparing Proton Exchange Membrane (PEM) fuel cell vehicles and fuelling infrastructure with conventional and alternative fuel vehicles. The analysis is based on actual performance data of commercial and near-commercial technologies. The specific fuels investigated were gasoline, diesel, natural gas, methanol, hydrogen and electricity. The Pembina Institute's Life-Cycle Value Assessment (LCVA) methodology was used to compare the environmental, economic and social performance of each system.
Technical Paper

Next Generation Supply Chain for the Emerging Economies: Overriding Local Constraints to Optimize Inventories

2011-04-12
2011-01-1251
Automotive manufacturers across the world have experienced the saturation of demand in the mature markets. Foraying into the emerging markets of India and China brings a mix of opportunities and challenges. These economies with 15%+ rising consumer demand, 7%+ rise in per-capita income and a passenger car density less than 1/8 of mature markets, hold promise of sustaining double-digit growth of vehicle sales. But the challenges are immense. Ultra-low margins of OEMs, lack of transportation infrastructure, Low level of maturity of funding operations, fragmented demand, import restrictions and mandatory export obligations pose serious constraints to non-linear growth. HONDA (Honda Siel Cars India Limited), a subsidiary of Honda Motor Corporation, Japan has developed the next generation supply chain with a strategy cognizant of the global opportunities and the local limitations which such emerging economies present.
Technical Paper

Recent Results on Liquid Fuelled APU for Truck Application

2003-03-03
2003-01-0266
A liquid fuelled, fuel cell auxiliary power unit (APU) can provide efficient, quiet and low pollution power for a variety of applications including commercial and military vehicles. Truck idling regulation, customer comfort or military “stealth” operation by using electrical power, require a device disconnected from the main diesel engine. The power can be utilized for air conditioning as well as other auxiliary systems found on board commercial trucks for driver comfort. In a military vehicle, this regulated power could be supplied to telecommunication and other computer equipment required for military operations. A system designed to be an add-on or retrofit solution using alternative fuel can have the potential to meet these requirements on the hundreds of thousands of existing vehicles currently in service or as optional equipment on a newly procured vehicle.
X