Refine Your Search

Topic

Search Results

Technical Paper

A Correction Method for Stationary Fan CFD MRF Models

2009-04-20
2009-01-0178
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In this paper we have examined the possibilities of correcting this deficiency with a simple “speed correction”. This is done by testing and simulating a production fan in the Volvo Fan Test Rig for two operating speeds, 1200 rpm and 2400 rpm. Pressure rise, fan power and static efficiency are presented as functions of volumetric flow rate. The simulations verify that using the MRF model the common behavior of under predicting pressure rise and performance of the fan occur. In addition, this work shows that; although the MRF is not predicting fan performance correctly it constitutes a reliable fan modeling strategy.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Axial Fan Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments

2011-04-12
2011-01-0652
Underhood Thermal Management has become an important topic for the majority of automotive OEM's. To keep combustion engines cool and manage waste heat efficiently is an important part in the design of vehicles with low fuel consumption. To be able to predict cooling performance and underhood airflow with good precision within a virtual design process, it is of utmost importance to model and simulate the cooling fan efficiently and accurately, and this has turned out to be challenging. Simulating the cooling fan in a vehicle installation involves capturing complex fluid dynamic interaction between rotating blades and stationary objects in the vicinity of the fan. This interaction is a function of fan rotation rate, fan blade profile, upstream and downstream installation components. The flow is usually highly turbulent and small geometry details, like the distance between the blade tip and the fan shroud, have strong impact on the fan performance characteristics.
Technical Paper

BioRID P3-Design and Performance Compared to Hybrid III and Volunteers in Rear Impacts of ΔV=7 km/h

1999-10-10
99SC16
Several investigators have noted limitations of the most commonly used dummy in rear impact testing, the Hybrid III. A dummy for rear impact testing, the BioRID I, has previously been presented. It was a step towards an effective tool for seat performance testing, but it was concluded that its neck extension and T1 upward motion were too small and that its user- friendliness could be improved. A new BioRID prototype has been developed. It has new neck muscle substitutes with damping and elastic elements that are independent of each other and fitted inside the torso. The new neck muscle substitutes extend to T3 and thus also load the upper thoracic spine. The new dummy has a softer thoracic spine and a torso made of softer rubber than was used for the original dummy. The BioRID prototype''s performance was compared to that of volunteers, the BioRID I and Hybrid III in rear impacts at ΔV=7 km/h.
Technical Paper

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-09-13
2011-01-2182
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. To model the cooling airflow process accurately in CFD, it is of utmost importance to model all components in the cooling airflow path accurately. These components are the heat exchangers, fan and engine bay blockage effect. This paper presents CFD simulations together with correlating measurements of a cooling airflow system placed in a test rig. The system contains a heavy duty truck louvered fin radiator core, fan shroud, fan ring and fan. Behind the cooling module and fan, a 1D engine silhouette is placed to mimic the blockage done by a truck engine. Furthermore, a simple hood is mounted over the module to mimic the guiding of air done by the hood shape in an engine bay.
Journal Article

Detailed Flow Studies in Close Proximity of Rotating Wheels on a Passenger Car

2009-04-20
2009-01-0778
Moving ground systems with rotating wheels have been used in wind tunnel tests during the last decades. Several studies on the effects of rotating wheels and the importance of wheel aerodynamics have been published. It is well known that both the local flow field and the global aerodynamic forces are affected by rotation of the wheels. Different studies indicate that the most significant effect from rotating the wheels is interference effects between the rear wheels and the underbody and vehicle base [1], [2]. A detailed flow field investigation around the wheels in close proximity to the vehicle has been performed on a passenger car in the Volvo Aerodynamic Wind Tunnel. Two omnidirectional 12-hole pressure probes were traversed in a number of planes close to the wheels. Effects of changing different parameters such as ground simulation and rim geometry were investigated. The local flow field has been scrutinised and related to the global aerodynamic properties of the vehicle.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV

2014-04-01
2014-01-0602
Under a global impulse for less man-made emissions, the automotive manufacturers search for innovative methods to reduce the fuel consumption and hence the CO2-emissions. Aerodynamics has great potential to aid the emission reduction since aerodynamic drag is an important parameter in the overall driving resistance force. As vehicles are considered bluff bodies, the main drag source is pressure drag, caused by the difference between front and rear pressure. Therefore increasing the base pressure is a key parameter to reduce the aerodynamic drag. From previous research on small-scale and full-scale vehicles, rear-end extensions are known to have a positive effect on the base pressure, enhancing pressure recovery and reducing the wake area. This paper investigates the effect of several parameters of these extensions on the forces, on the surface pressures of an SUV in the Volvo Cars Aerodynamic Wind Tunnel and compares them with numerical results.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Inertia Collection Applied to Vehicle Emissions

1989-09-01
892092
The INCOLL or INertia COLLection system described in this paper, should meet the requirements for a short transient test, without using any chassis dynamometer. To prove this point not only the background of its principles are described, but also results from its application both to S I engines with and without catalytic converters and to truck diesel engines. Special interest has been devoted to the oxygen sensor and converter efficiency and their response both during warm up and under transient conditions. The simplification of the analyzing equipment and the direct interpretation of the results, have been dealt with, as well as the repeativity of the results achieved. The INCOLL test may also have a potential use as quality test at the end of the production line and as a tool for reliability development as well as research and development within the field. The cost for an INCOLL test is estimated to be around one (1) percent of a normal FTP certification procedure.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

2023-04-11
2023-01-0657
Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance. In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used.
Technical Paper

Interaction of Downforce Generating Devices and Cooling Air Flow - A Numerical and Experimental Study on Open Wheeled Race Cars

2012-04-16
2012-01-1165
This study reflects on two areas of vehicle aerodynamics, optimising cooling performance and features that will improve the handling of the car. Both areas will have a significant impact on the overall performance of the car and at the same time these areas are linked to each other. The considered vehicle in this study was the Chalmers Formula Student 2011 Formula SAE car and the flow field was analysed using both numerical simulations as well as performing wind tunnel experiments on a 1:3-scale model of the car. The focus on increasing downforce without increasing the aerodynamic drag is particularly good in Formula SAE since fuel economy is an event at the competition. Therefore, the intention of this work is to present a study on how undertrays with different design such as added foot plates, diffuser and strakes can improve the downforce and reduce the drag.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Journal Article

Measurements of Energy Used for Vehicle Interior Climate

2014-11-01
2014-01-9129
Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation.
Journal Article

On the Effects of Wind Tunnel Floor Tangential Blowing on the Aerodynamic Forces of Passenger Vehicles

2017-03-28
2017-01-1518
Many aerodynamic wind tunnels used for testing of ground vehicles have advanced ground simulation systems to account for the relative motion between the ground and the vehicle. One commonly used approach for ground simulation is a five belt system, where moving belts are used, often in conjunction with distributed suction and tangential blowing that reduces the displacement thickness of the boundary layer along the wind tunnel floor. This paper investigates the effects from aft-belt tangential blowing in the Volvo Cars Aerodynamic wind tunnel. First the uniformity of the boundary layer thickness downstream of the blowing slots is examined in the empty tunnel. This is followed by investigations of how the measured performance of different vehicle types in several configurations, typically tested in routine aerodynamic development work, depends on whether the tangential blowing system is active or not.
X