Refine Your Search

Topic

Author

Search Results

Technical Paper

A Basic Study of “Energy-Absorbing” Vehicle Structure and Occupant Restraints by Mathematical Model

1967-02-01
670897
Simplified mathematical modeling has been employed to investigate the relationship between automobile forestructure energy absorption and the restraint loads applied to passengers during a 30 mph barrier collision. A two-massmodel was developed and validated to compute restraint loading from a given passenger compartment deceleration. The effect of various deceleration curves, representing forestructure modifications, is reported. A “constant force” restraint system is also evaluated.
Technical Paper

A Procedure for Measuring Instrument Panel Visibility

1972-02-01
720232
A procedure has been developed for measuring the relative visibility of automotive instrument panel graphics and components. Through use of a Luckiesh-Moss Visibility Meter, discreet values of visibility can be assigned to visual targets and related to driver reaction time. Also, eyes off the road lapsed time boundaries may be established which will define visibility requirements necessary to serve the total driver population. These requirements can be translated into meaningful guidelines or standards for visibility attributes such as size, shape, color, contrast, and position of graphics, controls, and indicators. How visibility measurements are made and interpreted and the visibility measuring facility are discussed in this paper.
Technical Paper

Air-Bag Inflator Gas-Jet Evaluation

1993-03-01
930237
This paper directs attention to a specific region of the air-bag deployment process. Both experimental and analytical results are presented. Experimental procedures and their results are presented along with a two dimensional unsteady isentropic CFD model and a empirical gas-jet model.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Analytical Techniques for Designing Riding Quality Into Automotive Vehicles

1967-02-01
670021
This paper describes techniques that predict and analyze dynamic response of vehicles traversing random rough surfaces. Road irregularities are statistically classified by frequency and amplitude distribution. This classification determines the nature of random inputs to mathematical vehicle models and allows computer prediction of dynamic response of a simulated vehicle. Once inputs and models are defined, parametric analysis with output criteria specified statistically can be performed. This allows prediction of vehicle riding quality and evaluation of design concepts. Statistical analysis of accelerometer measurements on actual vehicles permits verification of the design process and meaningful comparison between vehicles.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Application of Design and Development Techniques for Direct Injection Spark Ignition Engines

1999-03-01
1999-01-0506
Gasoline direct injection technology is receiving increased attention among automotive engineers due to its high potential to reach future emission and fuel economy goals. This paper reports some of the design and development techniques in use at Chrysler as applied to four-stroke Direct Injection Spark Ignition (DISI) engines. The spray characteristics of Chrysler's single-fluid high-pressure injector are reported. Tools used in the design process are identified. Observations of the in-cylinder fuel/air mixing process using laser diagnostic techniques and Computational Fluid Dynamics (CFD) are described. Finally, combustion and emissions characteristics using Design of Experiment (DoE) tests are presented.
Technical Paper

Assessing Design Concepts for NVH Using HYFEX (Hybrid Finite Element/Experimental) Modeling

1995-05-01
951249
This paper outlines several methodologies which use finite element and experimental models to predict vehicle NVH responses. Trimmed body experimental modal subsystem models are incorporated into the finite element system model to evaluate engine mounting systems for low frequency vibration problems. Higher frequency noise issues related to road input are evaluated using experimentally derived acoustic transfer functions combined with finite element subsystem model responses. Specific examples of system models built to simulate idle shake and road noise are given. Applications to engine mounting, suspension design, and body structure criteria are discussed.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Body Aerodynamics and Heater Air Flow

1966-02-01
660388
The heater air flow rate is a function not only of the heater itself but also of the size and location of the heater system air inlets, the car body air outlets, and the body surface pressure at these inlets and outlets. Favorable pressure conditions generally exist at the typical top cowl heater air inlet; however, the aerodynamics of each particular vehicle should be studied to confirm the existence of these conditions. Little consideration has been given to body air outlet pressure conditions since body leakage paths have generally served as adequate air outlets; but, as body leakage is reduced, specific air outlets must be considered and a knowledge of aerodynamics is essential to the achieving of appropriately sized and appropriately located air outlets.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
Technical Paper

Characterization of Lunar Surfaces and Concepts of Manned Lunar Roving Vehicles

1963-01-01
630078
This paper discusses the development of criteria necessary to establish reliable lunar exploration and construction vehicle concepts. To establish the basis for the development of these criteria, an exploration mission using the presently conceived Apollo launch vehicle system is described. The criteria resulting from the study of the contribution made by the hostile lunar environment and the life support system requirements within the framework of the selected mission are established. Soils testing in a hard vacuum is described, as are tests of models under simulated lunar terrain environment. Two lunar vehicle configurations are reviewed, including design parameters and subsystem development.
Technical Paper

Chrysler 3.5 Liter V-6 Engine

1993-03-01
930875
A new 3.5 liter, 60 degrees V6 engine has been designed specifically for Chrysler's 1993 MY line of mid-size sedans - Dodge Intrepid, Eagle Vision, Chrysler Concorde and New Yorker. This new engine features many new components for enchanced performance. The cylinder head has a single overhead cam, four valve-per - cylinder design. The intake system is a cross-flow design equipped with dual throttle bodies, and the manifold also incorporates a vacuum operated tuning valve that increases the mid-range torque of the engine. A windage tray is used on every engine to reduce drag on the rotating components within the crankcase. Dual knock sensors (one per cylinder bank) are used to take advantage of the aggressive spark advance and high compression ratio. The engine also utilizes a plastic, helical, water pump impeller that contributes to low parasitic power losses. The engine incorporates many components and features to ensure durability.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Common Tooling for Left-Hand and Right-Hand Instrument Panels

1997-02-24
970442
In many instances, automotive companies wish to create both a left-hand drive and a right-hand drive version of the same vehicle. When the vehicle has relatively low sales volumes, it is imperative to reduce investment costs wherever possible. One successful - if challenging - way is by producing the instrument panel system for both versions off the same tooling. This feat was accomplished in the case of the '97 Jeep® Wrangler, saving the company approximately $7 million.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Computer Aided Design Analysis of Instrument Panel Impact Zone

1983-02-01
830260
In anticipation of complying with European standards for impact protection, an instrument panel design was analyzed to determine A. impact zone boundaries B. impact test velocitiesfor the head of a front seat passenger. Chrysler computer aided design (C.A.D.) surfacing capabilities were utilized in the solution. Early knowledge of impact zone location is important to intelligent design decisions; knowledge of impact velocities aids in performing compliance testing.
X