Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Aerodynamics In The Future

2005-10-03
2005-01-3358
In the future, it will be possible to manufacture very small, robust machines, which may be attached to the surface of a wing allowing the classic boundary condition of “no-slip” to be altered at will. It is also possible that the heat transfer through the wing surface can be controlled. This paper reports an investigation into the possible benefits to aerodynamics that will occur if such machines become available. It is found that imposing an isothermal wing surface can increase the lift drag ratio of wing at transonic cruise and allowing slip at the surface can have the same effect. Both these effects are additive. It is found that control of heat transfer on a wing at hypersonic wing can act as a control device, comparable to that due a moderate flap deflection.
Technical Paper

Applications for High-Temperature (HT) Power Electronic Systems within the Drilling Industry

2006-11-07
2006-01-3105
It is well known that the drilling industry is a diverse industry with huge power needs for drilling deep wells. This paper discusses the drilling industry in general and the future need for HT power electronics to enable such activities as tractor drive drilling of deep horizontal wells. The discussion is geared at applications for drilling within the earth at ambient temperatures of 150°C and above.
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Journal Article

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding with and without Adhesives

2013-04-08
2013-01-1017
Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in broader applications of Mg in automotive body construction. Ultrasonic spot welding (USW) has been demonstrated successfully to join Mg to steel and to achieve strong joints. In this study, corrosion test of ultrasonic spot welds between 1.6 mm thick Mg AZ31B-H24 and 0.8 mm thick galvanized mild steel, without and with adhesive, was conducted. Adhesive used was a one-component, heat-cured epoxy material, and was applied between overlapped sheets before USW. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the 0.5% sodium chloride (NaCl) bath, a constant humidity environment, and a drying period. Lap shear strength of the joints decreased with the cycles of corrosion exposure. Good joint strengths were retained at the end of 30-cycle test.
Technical Paper

Effect of Ground Proximity on the Aerodynamic Characteristics of the STOL Aircraft

1987-12-01
872308
The aerodynamics of the STOL aircraft can experience significant changes in proximity to the ground. A review of the existing data base and methodologies has been made and the results of that review are presented in this paper. The existing data show that in ground proximity the STOL aircraft will generally experience a reduction in the lift component regardless of the lifting configuration. Those configurations with integrated power and lift systems will have an additional effect of ground induced aerodynamic changes. This paper will discuss the existing data base and the deficiencies of that data base.
Technical Paper

Effects of Section Size and Microstructural Features on the Mechanical Properties of Die Cast AZ91D and AM60B Magnesium Alloy Test Bars

1999-03-01
1999-01-0927
Reported tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys indicate that those values depend on the size and shape of the test samples and their global porosities. This paper reviews the mechanical properties reported in the open literature for these die cast alloys and indicates that section thickness and global porosity are inadequate for predicting the tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

Fatigue Properties of Die Cast Magnesium Alloys

2000-03-06
2000-01-1122
This paper provides a review of the fatigue properties reported in the open literature for die cast magnesium-based alloys. Recently developed fatigue data, in the form of stress versus number of cycles to failure for bending fatigue (R=-1), are presented for die cast AM60B and AZ91D alloy specimens with thicknesses between 1 and 10 mm. The effects of specimen thickness and macrostructural features, such as porosity distributions and surface features (parting line and ejection pin marks), on the fatigue data are discussed.
Technical Paper

Fatigue Technology in Vehicle Development

2001-03-05
2001-01-4081
Modern approaches to durability assurance in ground vehicle design are reviewed in the context of recent developments in computer-based analytical and experimental tools for use by designers and development engineers. Examples, using an automotive wheel assembly, are presented to illustrate the application of fatigue analysis in product development. Major challenges associated with the linking of various design tools into integrated networks appropriately configured for industrial problem solving are discussed along with an assessment of the potential benefits to be gained from such integration.
Technical Paper

Impulsive Dynamics & Noise Energy Modeling

2006-10-16
2006-01-3354
Gear rattle, clunk, and other such noises, commonly referred to as impulsive or unusual noise, are often classified as unique problems without common origins. This paper examines the underlying structure that promotes them and traces physical system behaviors that predispose them to such noises. Though the audible noise itself is not modeled directly, a good deal of the disposable energy that sustains it can be inferred from the impulsive dynamics that underlies the whole process. Further effort quantifies the energies involved and appraises the distinctiveness of the perceived noise. Whether one hears gear rattle or clunk depends on the initiating site within the system and the impulsivity index of the prevailing dynamics. Observable indicators suggest that periodic noise is supported by periodic dynamics and, similarly, impulsive noise, by impulsive dynamics and that the latter is non-deterministic, discontinuous and even chaotic.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Technical Paper

Mass Measurement of Soil Parameters in Off-Road Locomotion-Wheeled Automated Bewameter (WAB)

1986-09-01
861302
Development of Terrain-Vehicle Systems Analysis involving statistically variable ground, has necessitated the development of field instrumentation for mass measurement of soil parameter input. To this end, the idea originally conceived and tested at U.S. Army's Land Locomotion Laboratory in Detroit, was revived and adapted to modern requirements. The Wheeled Automated Bevameter (WAB) was presented as a better vehicle analog for measuring soil parameters than the conventional plate-shearing instrument hitherto used. It yields itself to mass production of terrain input, without which further progress in Terramechanics, based on statistical changes of the environment may be impossible.
Technical Paper

Microstructural Characteristics of Die Cast AZ91D and AM60 Magnesium Alloys

1999-03-01
1999-01-0928
Die cast AZ91D and AM60 magnesium alloy components are finding increasing usage in automotive applications. Both hot and cold chamber die cast components of these alloys generally exhibit several common microstructural features, including “skin”, porosity banding, and porosity distributed about the component centerline. Methods for quantitatively characterizing these microstructural features are described and representative values for skin thicknesses, porosity band dimensions and porosity band locations from selected die castings will be presented. The expected influence of these common microstrucutral features on mechanical properties and acceptability of die cast magnesium components for given applications are discussed.
Technical Paper

NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen

2001-11-01
2001-28-0048
This numerical study examines the chemical-kinetics mechanism responsible for EGR NOx reduction in standard engines. Also, it investigates the feasibility of using EGR alone in hydrogen-air and methanol-air combustion to help generate and retain the same radicals previously found to be responsible for the inducement of the autoignition (in such mixtures) in IC engines with the SONEX Combustion System (SCS) piston micro-chamber. The analysis is based on a detailed chemical kinetics mechanism (for each fuel) that includes NOx production. The mechanism for H-air-NOx combustion makes use of 19 species and 58 reactions while the methanol-air-NOx mechanism is based on the use of 49 species and 227 reactions. It was earlier postulated that the combination of thermal control and charge dilution provided by the EGR produces an alteration in the combustion mechanisms (for both the hydrogen and methanol cases) that lowers peak cycle temperatures-thus greatly reducing the production of NOx.
Technical Paper

Rolling Bearings for High Performance Hydrostatic Drives Using Water Glycol Based Hydraulic Fluids

2000-09-11
2000-01-2588
Hydraulic fluids of the HFC category are aqueous polymer solutions with a fire resistance enhancing water content of 35 to approx. 50 %. The use of HFC fluids, above all in mobile and stationary drives in mining and in casting is subject to restrictions resulting from a number of features of a fluid. Field practice has shown that while axial-piston pumps may be successfully operated using HFC fluids, rolling bearing failures reduce their operational lifetimes. The bearing failures essentially result from material fatigue. This can be remedied by new quality steel for roller bearings. The combination of high fatigue life and corrosion resistance assures a wide application range for nitrogen-treated steel qualities.
Journal Article

Stability Prediction of a UAV

2011-10-18
2011-01-2783
Typical design challenges for Unmanned Aerial Vehicles (UAVs) require low aerodynamic drag and structural weight. Both of these requirements imply that these aircraft are considerably more flexible than conventional aircraft and their stability analyses are more complex since they require models unifying rigid body and elastic dynamics. This paper aims to built such a model for a generic UAV. The model is then used to address stability in terms of divergence and flutter.
Technical Paper

The Evolution of Plastics in Automotive Applications

1983-02-01
830281
There have been plastics in automobiles almost as long as there have been plastics. This paper deals with plastic molded parts from the 1930’s through 1970. These parts include steering wheels, tail light lenses, knobs, electrical connectors, fasteners, speedometer wheels, distributor caps, water pump impellers, dials, and various decorative ornaments.
Technical Paper

The Influence of Residual Stresses on the Susceptibility to Hydrogen Embrittlement in Hardened Steel Components Subjected to Rolling Contact Conditions

2002-03-19
2002-01-1412
A review of many years of published work has shown that hydrogen embrittlement can occur under rolling contact conditions. Breakdown of lubrication and contamination with water have been cited as the probable sources of atomic hydrogen. In this paper, a unique fracture morphology is identified and the mechanism of the fracture progression from initiation to final catastrophic failure is proposed. Development of beneficial residual compressive stress near the contacting surfaces is one approach used to avoid this type of failure. Several alternative methods capable of developing a more desirable stress distribution will be discussed.
Technical Paper

The Super Loader

1988-05-01
880971
This paper deals with a conceptual aircraft cargo loader “that can do everything” commonly referred to as The Super Loader. The Super Loader is intended for use at air terminals to transport loads such as palletized cargo, containers, wheeled vehicles, shelters, and airdrop platforms from the storage docks to the military and civil aircraft, and vice versa. The loader may be described as a self-propelled, air transportable (in a C-141, C-17, C-5) 60,000 lb lifting capacity, adjustable height vehicle that will load/off load all transport aircraft from a C-130 whose cargo deck is only 3 feet, 3 inches high to a B-747 whose main deck upper limit is about 18 feet high. The Super Loader must also service the lower lobes of wide-bodies and main decks of narrow-bodied aircraft like the DC-8 and B-707. In brief, this loader will be required to interface with both civil and military cargo systems, present and future.
X