Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Durability of Extruded Electrically Heated Catalysts

1995-02-01
950404
Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Journal Article

Effect of Decoration on Windshield Impact Resistance and Novel Decoration Solution Compatible with Chemical Strengthening

2022-03-29
2022-01-0263
Vehicle windshields typically include a black decorative pattern around their periphery and other regions. Examination of field failed parts has shown that windshields often break from impacts in these decoration zones; often with the fracture initiating from the decoration material itself. In this work, the effect of different glazing decoration materials on glass strength and laminate impact resistance was evaluated. The decoration materials investigated included traditional inorganic enamel frit, an organic ink, and a new enamel frit that is compatible with glass chemical strengthening. Ring-on-Ring strength tests were conducted and showed that inorganic enamel frit reduces strength of glass by over 50% compared to undecorated glass, while organic inks do not adversely affect strength. Tests of a newly developed decoration frit material, compatible for chemical strengthening processes, showed strength levels that were on par with undecorated, unstrengthened glass.
Technical Paper

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

2012-04-16
2012-01-1292
Multi-scale computational chemistry methods based on the ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) are applied to investigate electronic and atomistic roles of cordierite substrate in sintering of washcoated automotive catalysts. It is demonstrated that the UA-QCMD method is effective in performing quantum chemical molecular dynamics calculations of crystals of cordierite, Al₂O₃ and CeZrO₄ (hereafter denoted as CZ). It is around 10,000,000 times faster than a conventional first-principles molecular dynamics method based on density-functional theory (DFT). Also, the accuracy of the UA-QCMD method is demonstrated to be as high as that of DFT. On the basis of these confirmations and comparison, we performed extensive quantum chemical molecular dynamics calculations of surfaces of cordierite, Al₂O₃ and CZ, and interfaces of Al₂O₃ and CZ with cordierite at various temperatures.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

High Temperature Durability of Electrically Heated Extruded Metal Support

1994-03-01
940782
The design, performance and optimization of the extruded electrically heated metal converter have recently been published(1,2). The present paper focuses on the physical durability of extruded metal EHC support at high temperature representative of operating conditions. The mechanical, thermal, creep and fatigue properties of Fe-Cr-Al honeycomb structure over 25°-1000°C temperature range are reported. In addition, the stresses arising from mounting and thermal loads are computed via finite element analysis and compared with the high temperature strength of extruded metal EHC support. A safe design stress which predicts 192,000 kilometer durability is estimated from high temperature fatigue behavior of extruded Fe-Cr-Al honeycomb structure.
Technical Paper

Reduced Energy and Power Consumption for Electrically Heated Extruded Metal Converters

1993-03-01
930383
Improved designs of extruded metal electrically heated catalysts (EHC) in combination with a traditional converter achieved the California ultra-low emission vehicle (ULEV) standard utilizing 50% less electrical energy than previous prototypes. This energy reduction is largely achieved by reducing the mass of the EHC. In addition to energy reduction, the battery voltage is reduced from 24 volts to 12 volts, and the power is reduced from 12 kilowatts to 3 kilowatts. Also discussed is the impact EHC mass, EHC catalytic activity, and no EHC preheating has on non-methane hydrocarbon emissions, energy requirements, and power requirements.
Journal Article

Reliability Evaluation of Thin, Lightweight Laminates for Windshield Applications

2016-04-05
2016-01-1401
The use of lightweight materials to produce automotive glazing is being pursued by vehicle manufacturers in an effort to improve fuel economy. As glazing’s become thinner, reduced rigidity means that the critical flaw size needed to create fracture becomes much smaller due to increased strain under load or impact. This paper documents experiments focused on the impact performance of several alternative thin laminate constructions under consideration for windshield applications (including conventional annealed soda-lime glass as well as laminates utilizing chemically strengthened glass), for the purpose of identifying new and unique failure modes that result from thickness reduction. Regulatory impact tests and experiments that focused on functional performance of laminates were conducted. Given the increased sensitivity to flaw size for thin laminates, controlled surface damage was introduced to parts prior to conducting the functional performance tests.
X