Refine Your Search

Topic

Search Results

Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

Combined Physical and ANN-Based Engine Model of a Turbo-Charged DI Gasoline Engine with Variable Valve Timing

2023-04-11
2023-01-0194
High-efficient simulations are mandatory to manage the ever-increasing complexity of automotive powertrain system and reduce development time and costs. Integrating AI methods into the development process provides an ideal solution thanks to massive increase in computational power. Based on an 1D physical engine model of a turbo-charged direct injection gasoline engine with variable valve timing (VVT), a high-performance hybrid simulation model has been developed for increasing computing performance. The newly developed model is made of a physics-based low-pressure part including intake and exhaust peripheries and a neural-network-based high-pressure part for combustion chamber calculations. For the training and validation of the combustion chamber neural networks, a data set with 10.5 million operating points was generated in a short time thanks to the parallelizable combustion chamber simulations in stand-alone mode.
Technical Paper

Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine

2013-09-08
2013-24-0047
In this paper the development approach and the results of numerical and experimental investigations on homogeneous charge compression ignition in a free piston engine are presented. The Free Piston Linear Generator (FPLG) is a new type of internal combustion engine designed for the application in a hybrid electric vehicle. The highly integrated system consists of a two-stroke combustion unit, a linear generator, and a mass-variable gas spring. These three subsystems are arranged longitudinally in a double piston configuration. The system oscillates linearly between the combustion chamber and the gas spring, while electrical energy is extracted by the centrally arranged linear generator. The mass-variable gas spring is used as intermediate energy storage between the downstroke and upstroke. Due to this arrangement piston stroke and compression ratio are no longer determined by a mechanical system.
Technical Paper

Development and Experimental Investigation of a Two-Stroke Opposed-Piston Free-Piston Engine

2016-11-08
2016-32-0046
The proposed paper deals with the development process and initial measurement results of an opposed-piston combustion engine for application in a Free-Piston Linear Generator (FPLG). The FPLG, which is being developed at the German Aerospace Center (DLR), is an innovative internal combustion engine for a fuel based electrical power supply. With its arrangement, the pistons freely oscillate between the compression chamber of the combustion unit and a gas spring with no mechanical coupling like a crank shaft. Linear alternators convert the kinetic energy of the moving pistons into electric energy. The virtual development of the novel combustion system is divided into two stages: On the one hand, the combustion system including e.g. a cylinder liner, pistons, cooling and lubrication concepts has to be developed.
Journal Article

Development of an Innovative Combustion Process: Spark-Assisted Compression Ignition

2017-09-04
2017-24-0147
In the competition for the powertrain of the future the internal combustion engine faces tough challenges. Reduced environmental impact, higher mileage, lower cost and new technologies are required in order to maintain its global position both in public and private mobility. For a long time, researchers have been investigating the so called Homogeneous Charge Compression Ignition (HCCI) that promises a higher efficiency due to a rapid combustion - i.e. closer to the ideal thermodynamic Otto cycle - and therefore more work and lower exhaust gas temperatures. Consequently, a rich mixture to cool down the turbocharger under high load may no longer be needed. As the combustion does not have a distinguished flame front it is able to burn very lean mixtures, with the potential of reducing HC and CO emissions. However, until recently, HCCI was considered to be reasonably applicable only at part load operating conditions.
Technical Paper

Enhanced Investigations of High-Performance SI-Engines by Means of 3D-CFD Simulations

2015-09-06
2015-24-2469
Comparative analyses of a high-performance 4-cylinder DISI-engine and its equivalent single-cylinder research engine were performed by means of fast response 3D-CFD simulations. Both engines have identical geometries of intake and exhaust channels, cylinder head and piston. The used 3D-CFD tool QuickSim was developed at the Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS), particularly for the numerical simulation of internal combustion engines (ICE). A calibration of the air consumption enabled a comparison of in-cylinder processes, including charge motion, mixture formation and combustion. All calculated operating points showed a similar trend. Deviations during the gas exchange phase led to a higher turbulence level and hence combustion velocity for the single-cylinder research engine. This resulted in a slightly higher maximum cylinder pressure and indicated mean effective pressure.
Technical Paper

Evaluation of Engine-Related Restrictions for the Global Efficiency by Using a Rankine Cycle-Based Waste Heat Recovery System on Heavy Duty Truck by Means of 1D-Simulation

2018-04-03
2018-01-1451
As a promising concept to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from industry in recent years. The greatest achievable global efficiency may be, however, restricted by the engine. On one hand, engine operating conditions have direct impact on the temperature and the mass flow of exhaust gas, which is the waste heat source, on the other hand, the engine cooling system limits the heat rejection from the condenser of the WHR system. This paper aims to evaluate the impacts of the varied engine applications considering the effects of the WHR system on the global efficiency and engine emissions.
Journal Article

Experimental and Numerical Investigation of Spark Plug and Passive Pre-Chamber Ignition on a Single-Cylinder Engine with Hydrogen Port Fuel Injection for Lean Operations

2023-06-26
2023-01-1205
The race towards zero carbon emissions is ongoing with the need to reduce the consumption of fossil energy resources. This demands immediate and reliable developments regarding technical environmentally friendly solutions for the power and transportation sectors. An alternative way to achieve a carbon-free powertrain is the use of green hydrogen for internal combustion engines. In this work the self-designed Fraunhofer single-cylinder engine with a displacement volume of 430 mm3 developed for extreme lean combustion and passive pre-chamber ignition was adapted for hydrogen engine operation. With hydrogen combustion, the customized cooling system resulting in low metal temperatures is simulated and optimized to avoid hot spots in the combustion chamber. The investigated single-cylinder engine is characterized by a compression ratio of 12.2, port fuel injection and a conventional spark plug.
Technical Paper

Fuel Injection Analysis with a Fast Response 3D-CFD Tool

2017-09-04
2017-24-0103
Main limiting factor in the application of 3D-CFD simulations within an engine development is the very high time demand, which is predominantly influenced by the number of cells within the computational mesh. Arbitrary cell coarsening, however, results in a distinct distortion of the simulation outcome. It is rather necessary to adapt the calculation models to the new mesh structure in order to ensure reliability and predictability of the 3D-CFD engine simulation. In the last decade, a fast response 3D-CFD tool was developed at FKFS in Stuttgart. It aims for a harmonized interaction between computational mesh, implemented calculation models and defined boundary conditions in order to enable fast running simulations for engine development tasks. Their susceptibility to errors is significantly minimized by various measures, e.g. extension of the simulation domain (full engine) and multi-cycle simulations.
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

The Application of E-Fuel Oxymethylene Ether OME1 in a Virtual Heavy-Duty Diesel Engine for Ultra-Low Emissions

2020-04-14
2020-01-0349
For long haul transport, diesel engine due to its low fuel consumption and low operating costs will remain dominant over a long term. In order to achieve CO2 neutrality, the use of electricity-based, synthetic fuels (e-fuels) provides a solution. Especially the group of oxymethylene ethers (OME) is given much attention because of its soot-free combustion. However, the new fuel properties and the changed combustion characteristics place new demands on engine design. Meanwhile, the use of new fuels also creates new degrees of freedom to operate diesel engines. In this work, the application of dimethoxymethane (OME1) is investigated by means of 1D simulation at three operating points in a truck diesel engine. The subsystems of fuel injection, air path and exhaust gas are sequentially adjusted for the purpose of low emissions, especially for low nitrogen oxides (NOx).
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Thermodynamics of Lean Hydrogen Combustion by Virtual Investigations on a Single-Cylinder Engine with Port Fuel Injection and Pre-Chamber Ignition

2023-08-28
2023-24-0063
In order to achieve the climate targets, a mix of different powertrain technologies must be pursued to effectively reduce emissions. By producing hydrogen based on renewable energy sources, it becomes a reasonable choice for fueling internal combustion engines. The specific molecular properties of hydrogen thereby open up new possibilities for favorably influencing the combustion process of engines. The present paper deals with the analysis of a single-cylinder engine with passive pre-chamber ignition and a port fuel injection system, which was adapted for lean hydrogen operation. In this way, the test unit was operated in various load and speed ranges with lambda values from 1.5 to 2.5 and achieved up to 23 bar indicated mean effective pressure. The focus of this work is on the numerical investigation of the hydrogen combustion and its effects on the engine system. Special attention is hereby paid to the influence of different lambda operations.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Piston Influence and Flow Pulsation

2019-09-09
2019-24-0003
Engine valve flow coefficients are used to describe the flow throughput performance of engine valve/port designs, and to model gas exchange in 0D/1D engine simulation. Valve flow coefficients are normally determined at a stationary flow test bench, separately for intake and exhaust side, in the absence of the piston. However, engine operation differs from this setup; i. a. the piston might interact with valve flow around scavenging top dead center, and instead of steady boundary conditions, valve flow is nearly always subjected to pressure pulsations, due to pressure wave reflections within the gas exchange ports. In this work the influences of piston position and flow pulsation on valve flow coefficients are investigated for different SI engine geometries by means of 3D CFD and measurements at an enhanced flow test bench.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
X