Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

A Magnetorheological Door Check

2001-03-05
2001-01-0619
Several shortcomings of mechanical door checks are overcome using a magnetorheological damper. Because the damper is electrically actuated, it can check in any desired position. The logical decision to activate or release the door check can be made either by passive circuitry based on input signals from switches attached to door handles or under microprocessor control, in which case the decision can take into account a variety of unconventional input factors, including the magnitude of the force applied to the door, the rate of change of the applied force, and the angle of door opening. With the addition of an appropriate proximity sensor, the controllable damper can prevent the door from inadvertently hitting a nearby obstacle. Details of the damper mechanism are described, and several implemented control strategies, both passive and microprocessor based, are discussed.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

1980-06-01
800800
The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Technical Paper

Accelerated Testing of Nonvolatile Memory Retention

1984-02-01
840488
This paper discusses the testing for retentivity of non-volatile memories. The physics associated with the reliable production of various non-volatile data storage devices has long been a topic of debate. The ability to reliably produce devices which endure erase/write cycling and retain data for extended periods of time has been questionable. Recent improvements in IC processing has given rise to claims of enhancements in both of these areas. Non-volatile memories are attractive in many automotive electronic applications where battery backup is neither convenient or feasible, but because of reliability concerns they have not found their way into critical applications. In applications like odometer or emission control calibrations it is imperative that memory retention is assured. In order to verify the reliability of the various available non-volatile memory devices, an accelerated test program was instituted.
Technical Paper

Advanced Control of Engine RPM for a More Intuitive Driving Experience in Power Split Hybrid Electric Vehicles

2010-10-25
2010-01-2194
The Auto Industry is responding to the environment and energy conservation concerns by ramping up production of hybrid electric vehicles (HEV). As the initial hurdles of making the powertrain operate are overcome, challenges such as making the powertrain feel more refined and intuitive remain. This paper investigates one of the key parameters for delivering that refinement: engine RPM behavior. Ideal RPM behavior is explored and included in the design of a control system. System implications are examined with regard to the effect of engine RPM scheduling on Battery usage and vehicle responsiveness.
Technical Paper

An Adaptable, Multitest, Multichannel Fatigue Test System

1995-02-01
950703
A highly adaptable fatigue testing computer system is presented for controlling single or multichannel test machines. The system imposes most common varieties of waveforms and also provides time synchronization between channels, such as in the case of variable amplitude biaxial load histories, and monitors various feedback signals for both data acquisition and alarm purposes. The program operates in a real-time Unix system as a separate stand-alone process. Communication with other users or the operator is done only through a reserved common block of shared memory. This feature allows control and monitoring of all tests over the computer network. A user can simply login remotely and check the test or start a data acquisition task from any workstation in the company, and then take the data files and analyze them on other computers. This paper describes the operation of the software, the methodology behind the hardware selection and the software structure.
Technical Paper

An Experimental Battery Powered Ford Cortina Estate Car

1970-02-01
700024
The design of the Ford Cortina Estate Car converted to propulsion by currently available batteries is described, and results for power train component performance test and vehicle driving characteristics are given. Concept and purpose of this test vehicle are discussed, and chassis and body modifications are described. Design of the electric power train, employing a dc commutator motor and dc solid state chopper controller, is developed. The car instrumentation is described and operating experience in several driving modes is reported. A discussion of battery characteristics concludes the paper.
Technical Paper

An Open Versus Closed Architecture for Multimedia Systems

2000-11-01
2000-01-C065
For many years, carmakers have developed unique system designs to gain a competitive advantage using some unique technology or an optimization of a design to cut costs or improve quality. This leads to continual increase in complexity, long development times and high development costs. A common platform, based on an "open architecture,'' provides a solution for many of the problems associated with the conventional automotive approach to electrical/electronic system designs. The PC industry is a prime example of how an open architecture can provide benefits to the consumer, manufacturers of software and hardware components, as well as complete system integrators. The PC, based on the initial IBM computer developed in the early eighties, has become a de facto standard that has survived 20 years of fast and dramatic changes in the fundamental technologies used within the platform.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Technical Paper

Compensation for Road Noise in Automotive Entertainment Systems

1987-02-01
870144
Vehicle operation noise, even in the quietest cars, produces high sound pressure levels (SPL) at very low frequencies. This noise masks desired signals in and above this frequency range. A blind subjective test, using ten listeners, was undertaken to determine a frequency response equalization curve that would compensate for this noise under specific but realistic conditions. Starting with a 4 dB full-band level increase, an average of 40 listener responses showed a gentle rise in bass reaching an additional 4 dB at 50 Hz.
Journal Article

Compressive Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Cells under Different Constrained Conditions

2014-04-01
2014-01-1987
The compressive behavior of lithium-iron phosphate battery cells is investigated by conducting in-plane constrained compression tests and out-of-plane compression tests of representative volume element (RVE) specimens. The results for cell RVE specimens under in-plane constrained compression tests without pre-strains and with pre-strains in the out-of-plane direction indicate that the load carrying capacity is characterized by the buckling of cell specimens. As the pre-strain increases, the nominal compressive stress-strain curve becomes higher. The nominal stress-strain curves in the out-of-plane direction were also obtained and used to determine the elastic moduli for the elastic buckling analyses of the cell components in the cell RVE specimens with different pre-strains. Based on the elastic buckling analyses for a beam with different lateral constraints due to different pre-strains in the out-of-plane direction, the number of half waves and the buckling stresses were obtained.
Technical Paper

Computation of Instantaneous Air Flow and Volumetric Efficiency

1964-01-01
640832
The presentation here of a computer program simulating an engine cycle emphasizes mechanical factors under the control of the engine designer rather than scientific aspects of combustion. Data secured by measuring valves, manifolds, and other parts on a flow bench are used to calculate instantaneous flow in and out of the cylinder for the firing engine. Heat transfer, finite time of combustion, and variable specific heat of the gas are also calculated. The program is particularly well adapted to indicating the direction and relative magnitude of the effect of changing one variable, such as valve size, at a time.
Technical Paper

Control Challenges and Methodologies in Fuel Cell Vehicle Development

1998-10-19
98C054
In recent years, rapid and significant advances in fuel cell technology, together with advances in power electronics and control methodology, has enabled the development of high performance fuel cell powered electric vehicles. A key advance is that the low temperature (80°C) proton-exchange-membrane (PEM) fuel cell has become mature and robust enough to be used for automotive applications. Apart from the apparent advantage of lower vehicle emission, the overall fuel cell vehicle static and dynamic performance and power and energy efficiency are critically dependent on the intelligent design of the control systems and control methodologies. These include the control of: fuel cell heat and water management, fuel (hydrogen) and air (oxygen) supply and distribution, electric drive, main and auxiliary power management, and overall powertrain and vehicle systems.
X