Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Integrated Cooling System for Underfloor High Voltage Devices in PHEV

2018-04-03
2018-01-1184
Compared to conventional hybrid electric vehicles, plug-in hybrid vehicles have a larger-capacity battery and an onboard charger. These devices are mounted in functionally optimal locations, so it is a challenge to provide a thermal management system that achieves a good balance between high cooling performance and low cost. The battery should be operated at required temperature to secure safety and durability at high temperatures, and to mitigate the decrease in output power and capacity. However, setting separate cooling systems suited for each device leads to both an increased cost and weight. Therefore, an integrated water cooling system was devised for the battery, charger, and DC-DC converter, and the cooling performance was verified through simulations and tests. A valve installed before the battery in the cooling circuit allows it to be bypassed when coolant temperature rises due the charger or low-speed engine operation, helping to preserve battery life.
Technical Paper

Powertrain Thermal System Development for Small BEV

2020-04-14
2020-01-1383
The dynamic performance of battery electric vehicles (BEV) is affected by battery output power, which depends on state of charge (SOC) and the temperature of battery cells. The temperature of the batteries varies in particular with the environment, in which the user stores the vehicle, and the battery output power. It is therefore necessary to employ thermal management systems that can control the battery temperature within the optimal range under severely hot and cold conditions in BEVs. A highly sophisticated thermal management system and its operation strategy were developed to fulfill the above requirements. The powertrain components to be thermo-controlled were located into two coolant circuits having different temperature range. The compact and efficient front-end heat exchangers were designed to optimally balance the cooling performance of powertrain, cabin comfort, vehicle aerodynamics and the vehicle design.
X