Refine Your Search

Topic

Author

Search Results

Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

A Research on the Prediction of Door Opening by the Inertia Effect during a Side Impact Crash

2016-04-05
2016-01-1532
The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study of Suspension Tightening Torque on the R&H Performance of High Performance Vehicles

2018-04-03
2018-01-0577
Suspension is a system which operates dynamically according to road condition unlike other system statically mounted to the body. Especially this is more remarkable in high performance vehicle because there are more high inputs from road to suspension than normal vehicle. For this reason, the tightening torque of suspension system of high performance vehicle is more important than other systems and normal vehicle. To support the clamping between parts against force from road when cornering, optimized tightening torque is required to maximize R&H performance. For this optimization, it should be conducted first to comprehend how much performance effects on vehicle by tightening torque. This paper presents relationship between tightening torque of suspension parts hardware and R&H performance.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

2007-04-16
2007-01-1748
The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

Diagnosis and Prognosis of Chassis Systems in Autonomous Driving Conditions

2023-04-11
2023-01-0741
Expanding various future mobilities such as purpose built vehicle (PBV), urban air mobility (UAM), and robo-taxi, the application of autonomous driving system (ADS) technology is also spreading. The main point of ADS is to ensure safety by monitoring vehicle anomalies to prevent functional failure or accident. In this study, a model-based diagnosis and prognosis process was established using degradation data generated during autonomous driving simulation. A vehicle model was designed using Modelica/Dymola, and autonomous driving simulation was performed by integrating the lane keeping assistant (LKA) system with the vehicle model using Matlab/Simulink. Degradation data for the 3 components (a shock absorber damper, a suspension bush, and a tire) of the chassis system were input into the integrated simulation model. The degradation behavior was monitored with K-nearest neighbor (K-NN) and Gaussian mixture model (GMM).
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Technical Paper

Experimental Study on DGPS/RTK Based Path Following System Using Backstepping Control Methodology

2007-08-05
2007-01-3579
This paper mainly focuses on a lateral control law for pre-given path following which is developed by using the backstepping control design methodology. The position information of the vehicle is obtained by Real Time Kinematic DGPS, and the yaw rate and side-slip angle used in controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speed and various path curvature conditions, the results are given through experiments which are executed on proving ground especially designed for high maneuvering test of which minimum radius of curvature is about 60 m.
Technical Paper

Fatigue Strength Evaluation for the Leaf Spring of Commercial Vehicle Considering U Bolt Fixing Force

2007-04-16
2007-01-0853
Suspension system of vehicle is very important because it has an effect on ride comfort and safety. And the leaf spring is one of the major parts of commercial vehicle. By that reason it has to be designed to operate under severe condition to ensure enough endurance. But the traditional method for fatigue design needs repeated fatigue tests for each design according to its geometry, material, and operating condition. This means that a lot of time and money is needed for those tests. Thus, in this paper, a fatigue design method for leaf spring based on numerical analysis is proposed. At first, stress analysis is performed to get the stress under operation load or rig tests. And fatigue analysis is performed to get the fatigue life and to ensure the safety of leaf spring. Through this study, design parameters that play vital role in fatigue life of the leaf spring can be found out.
Technical Paper

High Strength Light-Weight Valve Spring for Automotive Engine to Enhance Fuel Efficiency

2012-04-16
2012-01-0528
High strength oil-tempered wire was developed to apply to light-weight valve spring for automotive engine. By adding Mo, V, B and Ni, tensile strength increased by 20% compared to the conventional oil-tempered wire. Higher tensile strength of wire enabled a constant of valve spring to lower by reducing the size of spring. As a result, reduction of spring constant lowers the load of spring, thereby enhancing fuel efficiency.
Technical Paper

Hyundai Full Scale Aero-acoustic Wind Tunnel

2001-03-05
2001-01-0629
A new Hyundai Aero-acoustic Wind Tunnel (HAWT) has been opened in the Nam-yang Technical Center of Hyundai Motor Company (HMC) since August 1999. This wind tunnel has a 3/4 semi-open jet test section and a closed circuit in order to improve aerodynamic and wind noise and thermodynamic characteristics of vehicles. The HMC technical center had started the feasibility study of full-scale wind tunnel in 1995, to improve the aerodynamic characteristics and to meet fuel consumption regulations. The main purpose of this facility is conduct various kinds of tests on customer driving conditions, including aerodynamic and aero-acoustic tests and engine cooling simulations, etc. The technical specification was made on the basis of HMC engineers' experience of their own model scale and full-scale wind tunnels (like MIRA or DNW) during last 10 years.
Technical Paper

Optimal Rear Suspension Design for the Improvement of Ride Comfort and Suspension Noise

2012-04-16
2012-01-0975
The purpose of this paper is to identify and reduce a knocking noise from a rear suspension. First, the characteristics of a knocking noise are analyzed experimentally in the frequency domain. It was found that the knocking noise of a passenger room and vibration at a lower arm, a subframe and a floor are strongly correlated. Second, the knocking noise sensitivity is strongly dependent on suspension dynamics characteristics. Moreover, the improvement of ride comfort and noise was achieved simultaneously based on simulation analysis, principle vehicle testing. A design parameter study shows that the trailing arm bush stiffness, shock absorber bump/rebound damping characteristics, floor stiffness and shock absorber insulator bushing are one of the most sensitive parameter to affect the suspension knocking noise. Finally, this paper shows how the suspension knocking noise and ride comfort can be improved considering handling performance.
Technical Paper

Prediction and Optimization of Blocked Force Changes of a Suspension System Using Bush Stiffness Injection Method

2022-06-15
2022-01-0956
Automotive OEMs have introduced a new development paradigm, modular architecture development, to improve diversity quality and production efficiency. It needs solid fundamentals of system-based performance evaluation and development for each system level and single component level. When it comes to NVH development, it is challenging to realize the modular concept because noise and vibration should be transferred through various transfer path consisting of many parts and systems, which interact with each other. It is challenging for a single system of interest to be evaluated independently of the adjacent parts and environments. In this study, a new system-based development process for a vehicle suspension was investigated by applying blocked force theory and FRF-based dynamic substructuring. The objective is to determine the better dynamic stiffness distribution of many bushes installed in a suspension system in the frequency range corresponding to road noise.
Technical Paper

Prediction of Suspension Fundamental Mode Frequency with Extraction of Dynamic Properties of Automotive Shock Absorbers and Tire

2001-03-05
2001-01-0498
The automotive shock absorber has various functions in car performance. Particularly, it is a dominant tuning parameter to get good primary and secondary ride characteristics within 1-35Hz ranges in car development. Thus, understanding of characteristics of shock absorber in this frequency range is indispensable to both test and analysis engineers for an effective and systematic approach. In this study, tire is also investigated from the same point of view. Frequency dependent stiffness and damping coefficient are extracted by discrete sine swept test under constant velocity of 25, 50, 100mm/sec which represent typical road surface conditions[1]. The responses are analyzed on frequency domain and the basic theoretical background for this approach is introduced.
Technical Paper

Reduction of Road Noise by the Investigation of Contributions of Vehicle Components

2003-05-05
2003-01-1718
The mobility technique is used to analyze the transfer functions of road noise between the suspension and the body structure. In the previous analyses, the suspension system and the body structure are altogether modeled as subsystems in the noise transfer path. In this paper, the mobility between the suspension and the body structure is analyzed by the dynamic stiffness at the connecting points. The measured drive point acceleration FRF at the connecting point in the transfer path was used to estimate the contributions of subsystems. The vibration modes of tire, the acoustic noise of tire's interior cavity, the vibration modes of the car's interior room, and the vibrations of body structure and the chassis are also considered to analyze the coupling effects of the road noise. Analyzing the measured results, direction for modification of car components is suggested.
X