Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Predictive Tool for In-Cylinder Gas Motion in Engines

1978-02-01
780315
A method is described of calculating the flow, temperature and turbulence fields in cylinder configurations typical of a direct-injection diesel engine. The method operates by solving numerically the Navier Stokes equations that govern the flow, together with additional equations representing the effects of turbulence. A general curvilinear-orthogonal grid that translates with the piston motion is used for the calculations in the complex-shaped piston bowl, whilst an expanding/contracting grid is used elsewhere. Predictions are presented showing the evolution of the velocity and turbulence fields during the compression and expansion phases of a motored engine cycle, for various shapes of axisymmetric piston bowl and various initial swirl levels. These results illustrate the strong influence of these factors on the TDC flow structure.
Technical Paper

Measurement and Multidimensional Prediction of Flow in a Axisymmetric Port/Valve Assembly

1987-02-01
870592
The results are reported of a combined experimental and computational study of steady flow through an axisymmetric valve/port assembly, the main objective of which was to assess the accuracy of the multidimensional model predictions of this flow. Measurements of the discharge coefficient, mean velocity and the turbulent Reynolds stress fields were obtained by hot-wire anemometry at various valve lifts. These were supplemented by flow visualisation studies. Predictions were made using a finite-volume method employing a body-fitted computational mesh and the k-ε turbulence model. Good agreement was found at low lifts, but at higher values this deteriorated due to the inability of the turbulence model to provoke the flow separations which occurred in the experiments. The conclusion is that for both idealised and practical ports multidimensional predictions will be of limited accuracy until better turbulence models become available.
X