Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Absolute NO and OH Concentrations During Diesel Combustion Process by Multiwavelength Absorption Spectroscopy

2002-03-04
2002-01-0892
Conventional methods to measure gas concentrations and, in particular, NO are typically based on sampling by valve, sample treatment and subsequent analysis. These methods suffer low spatial and temporal resolution. The introduction of high energy lasers in combination with fast detection systems allowed to detect the NO distribution inside optically accessible Diesel engines. In this paper, a high spatial and temporal resolution in-situ technique based on ultraviolet - visible absorption spectroscopy is proposed. The characterization of the combustion process by the detection of gaseous compounds from the start of combustion until the exhaust phase was performed. In particular, this technique allows the simultaneous detection of NO and OH absolute concentrations inside an optically accessible Diesel combustion chamber.
Technical Paper

Assessment of a Detailed Kinetic Diesel Combustion Model by In-Cylinder Optical Measurements

2006-04-03
2006-01-0057
The main objective of the present paper is the application of a detailed kinetic model to study diesel combustion in an optical accessible engine equipped with a common rail injection system. Three different injection schedules made of one to three consecutive injections are considered from both the numerical and the experimental point of view. The numerical model is assessed in such a way to assure its portability with respect to changing injection strategies. The employed detailed kinetic mechanism consists of 305 reactions involving 70 species and is included in the KIVA-3V code. The considered fuel has the liquid phase properties of the diesel oil, the vapor phase properties of C14H28. It is subsequently decomposed into n-heptane and toluene. The chemical solver is based on the use of the reference species technique and on the Partially Stirred Reactor (PaSR) hypothesis. These allow maintaining the computational cost within acceptable limits.
Technical Paper

Characterization of RME, RME Aged and Mineral Diesel Fuel Injected by a Common Rail Apparatus for EURO5 Diesel Engines

2011-08-30
2011-01-1938
Alternative diesel fuels from renewable sources (biodiesels) have increased significantly interest due to their potential CO₂ emission benefits, capability to reduce unburned hydrocarbons and particulate matter emissions, biodegradability and non-toxicity. Biodiesels undergo ageing effects due to autoxidation processes of their molecular chains. Ageing leads to a variety of decomposition products like peroxides, alcohols, aldehydes and carboxylic acids. They are detectable as alterations of chemical properties, odor and taste (rancidity). The characteristics of Rapeseed Methylester (RME), RME aged and diesel sprays have been analyzed for different injection strategies in engines. The tests have been performed on a Bosch second generation common rail solenoid-driven fuel injection system capable of 160 MPa maximum injection pressure, fitted on EURO5 diesel engine for passenger car applications.
Technical Paper

Combustion Noise Prediction in a Small Diesel Engine Finalized to the Optimization of the Fuel Injection Strategy

2009-05-19
2009-01-2077
The paper illustrates both numerical and experimental methodologies aiming to characterize performances and overall noise radiated from a light duty diesel engine. The main objective was the development of accurate models to be included within an optimization procedure, able to define an optimal injection strategy for a common rail engine. The injection strategy was selected to contemporary reduce the fuel consumption and the combustion noise. To this aim, an experimental investigation was firstly carried out measuring engine performances and noise emissions at different operating conditions. Contemporary, a one-dimensional (1D) simulation of the engine under investigation was performed, finalized to predict the in-cylinder pressure cycles and the overall engine performances. The 1D model was validated with reference to the measured data. In order to assess the combustion noise, an innovative study, mainly based on the decomposition of the in-cylinder pressure signal, was utilized.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Technical Paper

Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines

2020-09-15
2020-01-2124
Compressed Natural Gas (CNG) is regarded as a promising fuel for spark-ignited (SI) internal combustion engines (ICE) to improve engine thermal efficiency and reduce both carbon dioxide and pollutant emissions. Significant advantages of CNG are higher-octane number, higher hydrogen to carbon ratio, and lower energy-specific CO2 emissions compared with gasoline. More, it can be produced in renewable ways, and is more widespread and cheaper than conventional liquid fossil fuels. In this regard, the direct injection of CNG engines can be considered a promising technology for highly efficient and low-emission future engines. This work reports an experimental and numerical characterization of high-pressure methane jets from a multi-hole injector for direct injection engines.
Technical Paper

High pressure combustion of wood pyrolysis oil

2001-09-23
2001-24-0025
Combusiton of pine pyrolysis oil droplets was studied at different pressures up to a maximum of 60 bar in a single-droplet combustion chamber. Oil droplets, with diameters between 400 μm and 120 μm were suspended to a thermocouple of to a quartz fiber. Their behavior was followed by means of high-speed digital imaging based on a shadowgraph scheme. About two thousands of frames were collected during every test with acquisition speed between 400 and 4000 frames/s. Droplets were easy to ignite at normal as well as at high pressure. Increasing the pressure the intensity of swelling phenomena, undergone by droplets, decreased and completely disappeared at pressures higher than 20 bar. However, bubbling and foaming were always observed. Liquid-phase pyrolysis and the formation of cenospheres as combustion residual were observed under all the pressure conditions.
Technical Paper

Influencing Parameters of the Exhaust Gas Emissions of a Stoichiometric Natural Gas Bus in Real Use

2001-09-23
2001-24-0038
In the frame of the IEA-AMF, Annex XVII project ‘Real Impact of New Technologies for Heavy Duty Vehicles’, three state-of-the-art city bus technologies were evaluated for fuel consumption and emissions in real city traffic and in a number of test cycles, both on engine and on vehicle level. One of the three buses was a natural gas bus with multi-point fuel injection, stoichiometric fuel control and three-way catalyst. Compared to the other tested technologies, this engine reached very low exhaust gas emissions. The paper will discuss the results obtained with the stoichiometric natural gas engine and compare the emissions in real traffic versus various engine test cycles, based on a number of influencing parameters. Concerning cycle characteristics it was the distribution of the engine operating points which had most effect on the exhaust gas emissions.
Technical Paper

Spectral Analysis of Combustion Process of Common Rail Diesel Engine

2002-05-06
2002-01-1634
Polychromatic extinction and chemiluminescence techniques, from ultraviolet to visible, were applied in an optical diesel engine, in order to analyze the temporal and spatial evolution of a high pressure fuel jet interacting with a swirling air motion. A fully flexible Common Rail fuel injection system equipped with a single hole nozzle was used. The experiments were performed at fixed engine speed and air/fuel ratio for three injection strategies. The first one consisted of a main injection to compare with those operating at low pressure injection. The other ones were based on a pilot and main injections, typical of current direct injection diesel engines, with different dwell time. A detailed investigation of the mixture formation process inside the combustion chamber during the ignition delay time was performed. The liquid and vapor fuel distribution in the combustion chamber was obtained analyzing the polychromatic extinction spectra.
Technical Paper

Spectroscopic Investigation of Initial Combustion Stages in a SI Engine Fuelled with Ethanol and Gasoline

2017-11-05
2017-32-0092
It is well known that ethanol can be used in spark-ignition (SI) engines as a pure fuel or blended with gasoline. High enthalpy of vaporization of alcohols can affect air-fuel mixture formation prior to ignition and may form thicker liquid films around the intake valves, on the cylinder wall and piston crown. These liquid films can result in mixture non-homogeneities inside the combustion chamber and hence strongly influence the cyclic variability of early combustion stages. Starting from these considerations, the paper reports an experimental study of the initial phases of the combustion process in a single cylinder SI engine fueled with commercial gasoline and anhydrous ethanol, as well as their blend (50%vol alcohol). The engine was optically accessible and equipped with the cylinder head of a commercial power unit for two-wheel applications, with the same geometrical specifications (bore, stroke, compression ratio).
X