Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

A Study on the Performance and Emissions of HCCI Oxy-Fuel Combustion in a CFR Engine with Recirculated Carbon Dioxide

2020-09-15
2020-01-2065
Stringent emission regulations and the anticipated climate change call for a paradigm shift in the design of the conventional internal combustion engines. One way to combat this problem is oxy-fuel combustion in which the combustion products are mainly water vapor and carbon dioxide. Water vapor can be easily separated by condensation and carbon dioxide is then easily captured and stored. However, many technical challenges are associated with this mode of combustion. There are many challenges facing oxy-fuel combustion before it find its way to commercial production especially for internal combustion engines. One such challenge is the relatively high temperature of the oxy-fuel combustion. A solution to this problem is the recirculation of the generated CO2 to moderate the in-cylinder temperature. Therefore, careful study of the effect of recirculating the CO2 back to combustion chamber is needed before the implementation of such a concept.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Technical Paper

Analysis of a Modern Twin-Spool Supercharged Gas Turbine Engine Concept for Hybrid Vehicle Applications

2023-08-28
2023-24-0127
This paper presents results from an extended analysis of a supercharged gas turbine concept initially proposed by Ford Motor Company in the 1960s. The concept was augmented through individual component improvements and utilization of new technologies developed over the 60 years since the inception of the original concept, known as the Ford “Type 704” engine. The model was constructed using Aspen Plus software and was validated in terms of the drive shaft power and brake-specific fuel consumption. The relative errors versus the data published by Ford were 0.06% in BSFC and 0.7% for shaft power and total fuel mass flow. The BTE matched the original Ford values to three decimal places. Having validated the model, a series of modernization steps were undertaken to bring the technology from six decades ago to a modern level. The model 704 has two spools, each connecting a compressor to its driven turbine with a separate power turbine positioned between the two other turbines.
Technical Paper

CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept

2019-01-15
2019-01-0070
Earlier studies on efficiency improvement in CI engines have suggested that heat transfer losses contribute largely to the total energy losses. Fuel impingement on the cylinder walls is typically associated with high heat transfer. This study proposes a two-injector concept to reduce heat losses and thereby improve efficiency. The two injectors are placed at the rim of the bowl to change the spray pattern. Computational simulations based on the Reynolds-Averaged Navier-Stokes approach have been performed for four different fuel injection timings in order to quantify the reduction in heat losses for the proposed concept. Two-injector concepts were compared to reference cases using only one centrally mounted injector. All simulations were performed in a double compression expansion engine (DCEE) concept using the Volvo D13 single-cylinder engine. In the DCEE, a large portion of the exhaust energy is re-used in the second expansion, thus increasing the thermodynamic efficiency.
Technical Paper

Combustion Stratification and Dynamic Flame Tracing Analysis of Partially Premixed Combustion in a Compression Ignition Engine Fueled with Low-Octane Fuel

2019-04-02
2019-01-1151
Partially premixed combustion (PPC) is a low-temperature combustion concept, which is between conventional diesel compression ignition (CI) and homogeneous charge compression ignition (HCCI). In PPC mode, the start of injection timing (SOI) is earlier than that of CI and later than that of HCCI and stratified in-cylinder fuel/air mixture can be formed to control the auto-ignition by the fuel injection timing. Gasoline fuel is beneficial for PPC mode because of its superior resistance to auto-ignition, which can enhance fuel-air charge mixing process with longer ignition delay time. The scope of this study is to investigate in-cylinder auto-ignition, combustion evolution, combustion stratification, and engine-out emissions at PPC operating mode under lean and low load engine conditions with different injection timings. Primary reference fuel PRF77, was selected as the low-octane test fuel.
Technical Paper

Computational Assessment of Ammonia as a Fuel for Light-Duty SI Engines

2023-08-28
2023-24-0013
To understand key practical aspects of ammonia as a fuel for internal combustion engines, three-dimensional computational fluid dynamics (CFD) simulations were performed using CONVERGETM. A light-duty single-cylinder research engine with a geometrical compression ratio of 11.5 and a conventional pentroof combustion chamber was experimentally operated at stoichiometry. The fumigated ammonia was introduced at the intake plenum. Upon model validation, additional sensitivity analysis was performed. The combustion was modeled using a detailed chemistry solver (SAGE), and the ammonia oxidation was computed from a 38-specie and 262-reaction chemical reaction mechanism. Three different piston shapes were assessed, and it was found that the near-spark flow field associated with the piston design in combination with the tumble motion promotes faster combustion and yields enhanced engine performance.
Technical Paper

Computational Study of Stratified Combustion in an Optical Diesel Engine

2017-03-28
2017-01-0573
Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
Technical Paper

Effect of Different Fluids on Injection Strategies to Suppress Pre-Ignition

2019-04-02
2019-01-0257
Pre-ignition is an abnormal engine combustion phenomenon where the inducted fuel-air charge ignites before the spark ignition. This premature combustion phenomenon often leads to heavy knocking events. The mixture preparation plays a critical role in pre-ignition tendency for a given load. Literature shows efforts made towards improving pre-ignition-limited-IMEP by splitting the injection pulse into multiple pulses. In this study, two direct injectors are used in a single cylinder research engine. A centrally mounted direct injector was used to inject Coryton Gasoline (RON 95) fuel early in the intake stroke. A second fluid was injected late in the compression stroke to suppress pre-ignition. The fluids used in the second direct injector was varied to see the effects of the molecule and its physical and chemical property on pre-ignition suppression tendency. Methanol, ethanol, water, and gasoline were tested as second fluid.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Fuel Stratification to Improve the Lean Limit in a Methane-Fueled Heavy-Duty Spark-Ignition Optical Engine

2023-08-28
2023-24-0045
Natural gas is an attractive fuel for heavy-duty internal combustion engines as it has the potential to reduce CO2, particulate, and NOx emissions. This study reports optical investigations on the effect of methane stratification at lean combustion conditions in a heavy-duty optical diesel engine converted to spark-ignition operation. The combination of the direct injector (DI) and port-fuel injectors (PFI) fueling allows different levels of in-cylinder fuel stratification. The engine was operated in skip-firing mode, and high-speed natural combustion luminosity color images were recorded using a high-speed color camera from the bottom view, along with in-cylinder pressure measurements. The results from methane combustion based on port-fuel injections indicate the lean burn limit at λ = 1.4. To improve the lean limit of methane combustion, fuel stratification is introduced into the mixture using direct injections.
Technical Paper

High-Speed 2-D Raman and Rayleigh Imaging of a Hydrogen Jet Issued from a Hollow-Cone Piezo Injector

2023-08-28
2023-24-0019
This paper reports high-speed (10 kHz and 100 kHz) 2-D Raman/Rayleigh measurements of a hydrogen (H2) jet issued from a Bosch HDEV4 hollow-cone piezo injector in a high-volume constant pressure vessel. During the experiments, a Pa = 10 bar ambient environment with pure nitrogen (N2) is created in the chamber at T = 298 K, and pure H2 is injected vertically with an injection pressure of Pi = 51 bar. To accommodate the transient nature of the injections, a kHz-rate burst-mode laser system with second harmonic output at λ = 532 nm and high-speed CMOS cameras are employed. By sequentially separating the scattered light using dichroic mirrors and bandpass filters, both elastic Rayleigh (λ = 532 nm) and inelastic N2 (λ = 607 nm) and H2 (λ = 683 nm) Raman signals are recorded on individual cameras. With the help of the wavelet denoising algorithm, the detection limit of 2-D Raman imaging is greatly expanded.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

Investigation into Various Strategies to Achieve Stable Ammonia Combustion in a Spark-Ignition Engine

2023-08-28
2023-24-0040
Ammonia (NH3) is a carbon-free fuel, which could partially or completely eliminate hydrocarbon (HC) fuel demand. Using ammonia directly as a fuel has some challenges due to its low burning speed and low flammability range, which generates unstable combustion inside the combustion chamber. This study investigated the effect of two different compression ratios (CRs) of 10.5 and 12.5 on the performance of ammonia combustion by using a conventional single spark-ignition (SI) approach. It was found that at a lower CR of 10.5, the combustion was unstable even at advanced spark timing (ST) due to poor combustion characteristics of ammonia. However, increasing the CR to 12.5 improved the engine performance significantly with lower cyclic variations. In addition, this research work also observed the effect of multiple spark ignition strategies on pure ammonia combustion and compared it with the conventional SI approach for the same operating conditions.
Technical Paper

Narrow-Throat Pre-Chamber Combustion with Ethanol, a Comparison with Methane

2020-09-15
2020-01-2041
With increasingly stringent emissions regulations, the use of pre-chamber combustion systems is gaining popularity in Internal Combustion Engines (ICE). The advantages of pre-chambers are well established, such as improving fuel economy by increasing the lean limit and reducing emissions, particularly NOX. In pre-chamber combustion, flame jets shoot out from the pre-chamber orifices into the main chamber, generating several ignition points that promote a rapid burn rate of the lean mixture (excess-air ratio (λ) >1) in the main chamber. This work studies the effects of using two different fuels in the main chamber and assesses the lean limit, the combustion efficiency (ηc), and the emissions of a single-cylinder heavy-duty engine equipped with a narrow-throat active pre-chamber. Ethanol (C2H5OH) was tested in the main chamber while keeping the pre-chamber fueled with methane (CH4), and the results were then compared to using methane as the sole fuel.
Technical Paper

Numerical Analysis of Hydrogen Injection and Mixing in Wankel Rotary Engines

2023-08-28
2023-24-0069
The Wankel rotary engine has been an attractive alternative for transportation due to its unique features of lightweight construction, small size, high power density, and adaptability to various fuels. This paper aims to investigate the performance of air-fuel mixing in a hydrogen-fuelled Wankel rotary engine using different fuelling strategies. To achieve this, 3D computational fluid dynamics (CFD) simulations were conducted using CONVERGE software on a prototype engine with a displacement of 225 cc, manufactured by Advanced Innovative Engineering UK. Initially, the simulations were validated by comparing the results with experimental data obtained from the engine fuelled with conventional gasoline under both motored and fired conditions. After validating the model, simulations were conducted on the premixed hydrogen engine combustion, followed by more detailed simulations of port fuel injection (PFI) and direct injection (DI) of hydrogen in the engine.
X