Refine Your Search

Topic

Author

Search Results

Technical Paper

A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations

2003-03-03
2003-01-0370
Computer programs that simulate the wave propagation phenomena involved in manifold tuning mechanisms are used extensively in the design and development of internal combustion engines. Most comprehensive engine simulation programs are based on the governing equations of one-dimensional gas flow as these provide a reasonable compromise between modelling accuracy and computational speed. The propagation of pressure waves through pipe junctions is, however, an intrinsically multi-dimensional phenomenon. The modelling of such junctions within a one-dimensional simulation represents a major challenge, since the geometry of the junction cannot be fully represented but can have a major influence on the flow. This paper introduces a new pressure-loss junction model which can mimic the directionality imposed by the angular relationship of the pipes forming a multi-pipe junction. A simple technique for estimating the pressure-loss data required by the model is also presented.
Technical Paper

Asymmetric Valve Strategies and Their Effect on Combustion

1993-03-01
930821
In order to reduce the development time involved in optimising the combustion system and valve timing of the internal combustion engine, an electro-hydraulic valve actuation system has been developed. The effects of various combustion strategies, including asymmetrical valve events, on emissions and efficiency, together with their sensitivity to EGR and AFR were investigated. In addition, the influence of the cylinder head design on in-cylinder charge motion and combustion was investigated by correlating airflow, tumble and swirl data to the heat release data obtained during dynamometer testing.
Technical Paper

Comprehensive Charge-cooler Model for Simulating Gas Dynamics in Engine Manifolds

2000-03-06
2000-01-1264
Charge-coolers have a significant effect on the performance of turbocharged internal combustion engines. For a comprehensive simulation of internal combustion engines fitted with such devices it is important to model the whole of the manifold system. A wave-action model of a charge-cooler boundary is proposed, together with a methodology for predicting the heat transfer coefficient of the device. This approach enables the instantaneous effectiveness of the charge-cooler to be predicted as a function of the mass flow rate through the device.
Technical Paper

Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature

2005-04-11
2005-01-0157
The Homogeneous Charge Compression Ignition (HCCI) engine combustion uses heat energy from trapped exhaust gases enhanced by the piston compression heating to auto ignite a premixed air/gasoline mixture. As the HCCI combustion is controlled by the charge temperature, composition and pressure, it therefore, prevents the use of a direct control mechanism such as in the spark and diesel combustion. Using a large amount of trapped residual gas (TRG), is seen as one of the ways to achieve and control HCCI in a certain operating range. By varying the amount of TRG in the fresh air/fuel mixture (inside the cylinder), the charge mixture temperature, composition and pressure can be controlled and hence, the auto ignition timing and heat release rate. The controlled auto ignition (HCCI) engine concept has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions.
Technical Paper

Exploitation of Energy Resources and Future Automotive Fuels

2007-01-23
2007-01-0034
The future exploitation of global energy resources is currently being hotly debated by politicians and by sections of the scientific community but there is little guidance available in the engineering literature as to the full gamut of options or their viability with respect to fuelling the world's vehicles. In the automotive industry extensive research is being undertaken on the use of alternative fuels in internal combustion engines and on the development of alternative powerplants but often the long-term strategy and sustainability of the energy sources to produce these fuels is not clearly enunciated. The requirement to reduce CO2 emissions in the face of accelerating global warming scenarios and the depletion of fossil-fuel resources has led to the widespread assumption that some form of ‘hydrogen economy’ will prevail; this view is seldom justified or challenged.
Technical Paper

Fuel Economy Improvement Using Combined CAI and Cylinder Deactivation (CDA) - An Initial Study

2005-04-11
2005-01-0110
Ever increasing oil prices and emissions legislation have forced automobile manufacturers to investigate new methods and technologies to reduce fuel consumption in Spark Ignition (SI) engines. Two such technologies are Controlled Auto Ignition (CAI) and Cylinder Deactivation (CDA), both of which have the potential to decrease fuel consumption at light load. This paper presents synergies between running engines in CAI and CDA operation. A baseline simulation model of a production intent vehicle incorporating a four-cylinder engine was produced and correlated to measured test data. Experimental results of various CAI and CDA investigations have been projected onto the baseline simulation model and an analysis performed over the New European Drive Cycle (NEDC). It has been found that running an engine in CAI or CDA mode improves efficiency in explicit areas of the fuel map.
Technical Paper

GEM Ternary Blends of Gasoline, Ethanol and Methanol: An Initial Investigation into Fuel Spray and Combustion Characteristics in a Direct-Injected Spark-Ignition Optical Engine Using Mie Imaging

2012-09-10
2012-01-1740
Five different fuels, including gasoline, commercial E85, pure methanol and two mixtures of gasoline, ethanol and methanol, (GEM), configured to a target stoichiometric air fuel ratio have been investigated in a fully-optically-accessed engine. The work investigated effects of injection duration, and performed spray imaging, thermodynamic analysis of the combustion and OH imaging, for two fixed engine conditions of 2.7 and 3.7 bar NMEP at 2000 rpm. The engine was operated with constant ignition timing for all fuels and both loads. One of the most important results from this study was the suitability of a single type of injector to handle all the fuels tested. There were differences observed in the spray morphology between the fuels, due to the different physical properties of the fuels. The energy utilisation measured in this study showed differences of up to 14% for the different GEM fuels whereas an earlier in-vehicle study had showed only 2 to 3%.
Technical Paper

GEM Ternary Blends: Removing the Biomass Limit by using Iso-Stoichiometric Mixtures of Gasoline, Ethanol and Methanol

2011-09-11
2011-24-0113
The paper presents the concept of ternary blends of gasoline, ethanol and methanol in which the stoichiometric air-fuel ratio (AFR) is controlled to be 9.7:1, the same as that of conventional ‘E85’ alcohol-based fuel. This makes them iso-stoichiometric. Such blends are termed ‘GEM’ after the first initial of the three components. Calculated data is presented showing how the volumetric energy density relationship between the three components in these blends changes as the stoichiometric AFR is held constant but ethanol content is varied. From this data it is contended that such GEM blends can be ‘drop-in’ alternatives to E85, because when an engine is operated on any of these blends the pulse widths of the fuel injectors would not change significantly, and so there will be no impact on the on-board diagnostics from the use of such blends in existing E85/gasoline flex-fuel vehicles.
Technical Paper

GEM Ternary Blends: Testing Iso-Stoichiometric Mixtures of Gasoline, Ethanol and Methanol in a Production Flex-Fuel Vehicle Fitted with a Physical Alcohol Sensor

2012-04-16
2012-01-1279
The paper presents vehicle-based test work using tri-component, or ternary, blends of gasoline, ethanol and methanol for which the stoichiometric air-fuel ratio (AFR) was controlled to be 9.7:1. This is the same as that of conventional "E85" alcohol-based fuel. Such ternary blends are termed "GEM" after the first initial of the three components. The present work was a continuation of an earlier successful project which established that the blends were effectively invisible to a car using a virtual alcohol sensor. The vehicle used here employed the other major technology in flex-fuel vehicles to determine the proportion of alcohol fuel in the tank, a physical alcohol sensor. Another aspect of the present work included the desire to investigate ternary blend replacements for E85 having low ethanol concentrations. Evidence from the previous work suggested that under specific conditions, ethanol was required in some amount to act as a cosolvent for the gasoline and methanol in the blend.
Technical Paper

Improving Fuel Economy in a Turbocharged DISI Engine Already Employing Integrated Exhaust Manifold Technology and Variable Valve Timing

2008-10-06
2008-01-2449
Many new technologies are being developed to improve the fuel consumption of gasoline engines, including the combination of direct fuel injection with turbocharging in a so-called ‘downsizing’ approach. In such spark ignition engines operating on the Otto cycle, downsizing targets a shift in the operating map such that the engine is dethrottled to a greater extent during normal operation, thus reducing pumping losses and improving fuel consumption. However, even with direct injection, the need for turbine protection fuelling at high load in turbocharged engines - which is important for customer usage on faster European highways such as German Autobahns - brings a fuel consumption penalty over a naturally-aspirated engine in this mode of operation.
Technical Paper

Ion Current Signal Interpretation via Artificial Neural Networks for Gasoline HCCI Control

2006-04-03
2006-01-1088
The control of Homogeneous Charge Compression Ignition (HCCI) (also known as Controlled Auto Ignition (CAI)) has been a major research topic recently, since this type of combustion has the potential to be highly efficient and to produce low NOx and particulate matter emissions. Ion current has proven itself as a closed loop control feedback for SI engines. Based on previous work by the authors, ion current was acquired through HCCI operation too, with promising results. However, for best utilization of this feedback signal, advanced interpretation techniques such as artificial neural networks can be used. In this paper the use of these advanced techniques on experimental data is explored and discussed. The experiments are performed on a single cylinder cam-less (equipped with a Fully Variable Valve Timing (FVVT) system) research engine fueled with commercially available gasoline (95 ON).
Journal Article

Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol: Investigations into Exhaust Emissions, Blend Properties and Octane Numbers

2012-09-10
2012-01-1586
Iso-stoichiometric ternary blends - in which three-component blends of gasoline, ethanol and methanol are configured to the same stoichiometric air-fuel ratio as an equivalent binary ethanol-gasoline blend - can function as invisible "drop-in" fuels suitable for the existing E85/gasoline flex-fuel vehicle fleet. This has been demonstrated for the two principal means of detecting alcohol content in such vehicles, which are considered to be a virtual, or software-based, sensor, and a physical sensor in the fuel line. Furthermore when using such fuels the tailpipe CO₂ emissions are essentially identical to those found when the vehicle is operated on E85. Because of the fact that methanol can be made from a wider range of feed stocks than ethanol and at a cheaper price, these blends then provide opportunities to improve energy security, to reduce greenhouse gas emissions and to produce a fuel blend which could potentially be cheaper on a cost-per-unit-energy basis than gasoline or diesel.
Technical Paper

Linear Regression and its Use in Predicting the Link Between Ionization Current and the Pressure Signal in a Hybrid Mode Engine

2006-10-16
2006-01-3278
Homogenous Charge Compression Ignition (HCCI) is an alternative to Spark Ignited (SI) combustion, which can provide part-load efficiencies as high as compression ignition engines and energy densities as high as SI engines, without high levels of NOx or Particulate Matter (PM). The principle of operation involves reaching the thermal oxidization barrier of a homogeneous air-fuel mixture. This combustion practice is enabled by diluting then compressing the mixture with the Trapped Residual Gases (TRG) to dilute the initial charge thus keeping combustion temperatures down. Introduction of exhaust gasses in the mixture can be achieved by the use of early exhaust valve closure and late inlet valve opening. The charge is well mixed avoiding particulate emissions, and by using exhaust gasses for load regulation the need for throttled operation is removed allowing the realization of high efficiencies, low pumping losses and a resulting 15 - 20% improvement in fuel economy.
Technical Paper

On the Mechanism of Controlled Auto Ignition

2002-03-04
2002-01-0421
Controlled auto ignition (CAI) is a form of combustion which uses an auto-ignited homogeneous air/fuel mixture but is controlled (or moderated) by regulating the quantity of internal exhaust gas residuals. In this paper, using a fully variable valve train and a newly developed exhaust valve control strategy, we substituted EGR with hot nitrogen or hot air. We found that the internal exhaust gas residuals have both thermal and chemical effects on CAI combustion. To investigate the thermal effect, nitrogen was used as it is a chemically inert gas. Although its temperature was raised to that of the internal exhaust gas residuals during testing, CAI combustion could not be promoted without assistance from a spark in a form of hybrid CAI, thus indicating that exhaust gas residuals have a chemical effect as well.
Technical Paper

Optimal Control Inputs for Fuel Economy and Emissions of a Series Hybrid Electric Vehicle

2015-04-14
2015-01-1221
Hybrid electric vehicles offer significant fuel economy benefits, because battery and fuel can be used as complementing energy sources. This paper presents the use of dynamic programming to find the optimal blend of power sources, leading to the lowest fuel consumption and the lowest level of harmful emissions. It is found that the optimal engine behavior differs substantially to an on-line adaptive control system previously designed for the Lotus Evora 414E. When analyzing the trade-off between emission and fuel consumption, CO and HC emissions show a traditional Pareto curve, whereas NOx emissions show a near linear relationship with a high penalty. These global optimization results are not directly applicable for online control, but they can guide the design of a more efficient hybrid control system.
Technical Paper

Powertrain Systems Definition Process

1995-02-01
950811
The pressures on the Automotive Industry from both future legislation and customer requirements mean that major changes in Powertrain and Vehicle Systems matching will be needed. This paper reviews some possible future technologies and describes the process by which the often mutually exclusive total vehicle performance objectives can best be satisfied. In conclusion the paper includes a brief case study showing a proposed solution to a set of possible future vehicle performance and fuel economy objectives. The process is based on empirical data, experience and w-here appropriate, analytical techniques.
Technical Paper

Production Electro-Hydraulic Variable Valve-Train for a New Generation of I.C. Engines

2002-03-04
2002-01-1109
Recently [SAE 2001-01-0251], we reported for the first time on using a fully variable valve train (FVVT) to facilitate controlled auto-ignition (CAI) in 4-stroke gasoline engines, with a 23% reduction in fuel consumption and a reduction of up to 95% in emission levels. In this paper we look at the industry trends towards increased control over combustion related processes occurring in modern engines, which signaled the direction towards the CAI work, and review a range of valve train technologies available to meet these trends. Previous key work conducted by industry and academic researchers is also reviewed to establish a minimum specification requirement for the new fully variable valve train systems. The paper then describes two electro-hydraulic valve actuation systems capable of meeting these specifications, the first a research grade system used on single cylinder engines and the second a new production viable system that is aimed at bringing FVVT's to high volume production.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Journal Article

Project Omnivore: A Variable Compression Ratio ATAC 2-Stroke Engine for Ultra-Wide-Range HCCI Operation on a Variety of Fuels

2010-04-12
2010-01-1249
The paper describes the principal features of Omnivore, a spark-ignition-based research engine designed to investigate the possibility of true wide-range HCCI operation on a variety of fossil and renewable liquid fuels. The engine project is part-funded jointly by the United Kingdom's Department for the Environment, Food and Rural Affairs (DEFRA) and the Department of the Environment of Northern Ireland (DoENI). The engineering team includes Lotus Engineering, Jaguar Cars, Orbital Corporation and Queen's University Belfast. The research engine so far constructed is of a typical automotive cylinder capacity and operates on an externally-scavenged version of the two-port Day 2-stroke cycle, utilising both a variable charge trapping mechanism to control both trapped charge and residual concentration and a wide-range variable compression ratio (VCR) mechanism in the cylinder head.
Technical Paper

SI-HCCI-SI Mode Transition at Different Engine Operating Conditions

2005-04-11
2005-01-0156
The homogeneous charge compression ignition-HCCI (also to be known as controlled auto ignition-CAI) engine concept has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions. It experiences, however, problems with cold start, running at idle and high loads that together with controlling the combustion over the entire speed/load range limits its practical application. A solution to overcome these problems is to operate the engine in ‘hybrid mode’, where the engine operates in HCCI mode at low, medium and cruising loads and switch to spark ignition (SI) mode (or diesel mode-CI) at a cold start, idle and higher loads. To operate such ‘hybrid mode’ engine, a transition between SI and HCCI and SI modes, as a result of changes in engine speed and load must be seamless in operation, whilst keeping all relevant engine and combustion parameters in an acceptable range.
X