Refine Your Search

Topic

Search Results

Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Technical Paper

A Look at the Automotive-Turbine Regenerator System and Proposals to Improve Performance and Reduce Cost

1997-02-24
970237
The adoption of turbine engines for automotive power plants has been hampered by the high cost, high leakage and high wear rate of present designs of ceramic-matrix regenerators. Proposals are made and analyzed here for design directions to achieve substantial improvements in all three areas. These include lower-cost extruded and pressed matrices; and clamping seals coupled with incremental movement of the rotary-regenerator matrix.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Achieving An Affordable Low Emission Steel Vehicle; An Economic Assessment of the ULSAB-AVC Program Design

2002-03-04
2002-01-0361
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. These goals are conflicting in nature and solutions will be realized by innovative design, advanced material processing and advanced materials. Advanced high strength steels are engineered materials that provide a remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics essential to meeting the goals of automotive design. These characteristics act as enablers to cost- and mass-effective solutions. The ULSAB-AVC program demonstrates a solution to these conflicting goals and the advantages that are possible with the utilization of the advance high strength steels and provides a prediction of the material content of future body structures.
Technical Paper

Alternative Tooling Technologies for Low Volume Stamping

1999-09-28
1999-01-3216
Low volume manufacturing has become increasingly important for the automotive industry. Globalization trends have led automakers and their suppliers to operate in developing regions where minimum efficient scales can not always be achieved. With proper maintenance, standard cast iron stamping tools can be used to produce millions of parts, but require large investments. Thus at high production volumes, the impact of the tooling investment on individual piece costs is minimized. However, at low volumes there is a substantial cost penalty. In light of the trends towards localized manufacturing and relatively low demands in some developing markets, low cost stamping tools are needed. Several alternate tooling technologies exist, each of which require significantly lower initial investments, but suffer from greatly reduced tool lives. However, the use of these technologies at intermediate to high volumes requires multiple tool sets thus eliminating their cost advantage.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Assessing the Windage Tray Blockage Effect on Aeration in the Oil Sump

2007-10-29
2007-01-4109
The windage tray effect on aeration in the engine sump was assessed by replacing much of the windage tray materials with wire meshes of various blockages. The mesh was to prevent direct impact of the oil drops spinning off the crank shaft onto the sump oil, and simultaneously, to provide sufficient drainage so that there was no significant build up of windage tray oil film that would interact with these droplets. Aeration at the oil pump inlet was measured by X-ray absorption in a production V-6 SI engine motoring at 2000 to 6000 rpm. Within experimental uncertainty, these windage tray changes had no effect on aeration. Thus activities in the sump such as the interaction of the oil drops spun from the crank shaft with the sump oil or with the windage tray, and the agitation of the sump oil by the crank case gas, were not major contributors to aeration at the pump inlet.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Closed Shape Within a Flexible Band, Free-Shape and Force in Circular Bore Study

2018-04-03
2018-01-1279
A new multi-scale curved beam based model was developed for piston-ring designs. This paper describes the free-shape, force in circular bore and closed shape within a flexible band (ovality) related parts. Knowing any one of these distributions, this model determines the other two. This tool is useful in the sense that the characterization of the ring is carried out by measuring its closed shape within a flexible band which is more accurate than measuring its free shape or force distribution in circular bore. Thus, having a model that takes the closed shape within a flexible band as an input is more convenient and useful based on the experiments carried out to characterize the ring.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Development of a Time and Space Resolved Sampling Probe Diagnostic for Engine Exhaust Hydrocarbons

1996-02-01
961002
In order to understand how unburned hydrocarbons emerge from SI engines and, in particular, how non-fuel hydrocarbons are formed and oxidized, a new gas sampling technique has been developed. A sampling unit, based on a combination of techniques used in the Fast Flame Ionization Detector (FFID) and wall-mounted sampling valves, was designed and built to capture a sample of exhaust gas during a specific period of the exhaust process and from a specific location within the exhaust port. The sampling unit consists of a transfer tube with one end in the exhaust port and the other connected to a three-way valve that leads, on one side, to a FFID and, on the other, to a vacuum chamber with a high-speed solenoid valve. Exhaust gas, drawn by the pressure drop into the vacuum chamber, impinges on the face of the solenoid valve and flows radially outward.
Technical Paper

Economic Analysis of Hydro-Mechanical Sheet Metal Forming

1999-09-28
1999-01-3207
Recent industry trends have resulted in growing interest among automakers in low to medium volume manufacturing. The expansion of automobile production into developing economies and the desire to produce specialized vehicles for niche markets have pressed the automakers to find cost effective solutions for manufacturing at low volumes, particularly with regard to sheet metal forming. Conventional high volume stamping operations rely heavily on achieving minimum scale economies which occur at about 200,000 parts per year. These scale economies are mainly dictated by the efficient use of the standard, expensive cast iron dies. These dies can cost well over one million dollars depending on the part, and in return offer tool lives over 5 million strokes. Die investment can be reduced by changing the stamping process technology. Hydro-mechanical forming has been proposed as a promising low volume alternative to conventional stamping.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

1999-10-25
1999-01-3578
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Journal Article

Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation

2009-06-15
2009-01-1907
The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency).
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Intake Valve Thermal Behavior During Steady-State and Transient Engine Operation

1999-10-25
1999-01-3643
Intake valve thermal behavior was observed across a wide range of operating conditions while running an engine on both propane and gasoline. Compared to the gaseous fuel, the liquid fuel operation has cooler valve temperatures (∼50-100C difference) and there is significant temperature gradient across the valve surface due to liquid fuel impinging on the front quadrant of the valve. The valve warm-up time is largely determined by the effective thermal inertia of the valve (∼valve body plus 1/3 of stem mass) and the thermal resistance to the seat. The valve is heated up by the combustion chamber; the dominant cooling paths are through the seat contact and the liquid fuel evaporation. Just after starting, very little fuel evaporates from the cold valve until there is a substantial increase in valve temperature in a period of approximately 10-20 seconds.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
X