Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

A Computationally Lightweight Dynamic Programming Formulation for Hybrid Electric Vehicles

2022-03-29
2022-01-0671
Predicting the fuel economy capability of hybrid electric vehicle (HEV) powertrains by solving the related optimal control problem has been available for a few decades. Dynamic programming (DP) is one of the most popular techniques implemented to this end. Current research aims at integrating further powertrain modeling criteria that improve the fidelity level of the optimal HEV powertrain control behavior predicted by DP, thus corroborating the reliability of the fuel economy assessment. Dedicated methodologies need further development to avoid the curse of dimensionality which is typically associated to DP when increasing the number of control and state variables considered. This paper aims at considerably reducing the overall computational effort required by DP for HEVs by removing the state term associated to the battery state-of-charge (SOC).
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

A Methodology for Modelling of Driveline Dynamics in Electrified Vehicles

2021-04-06
2021-01-0711
The assessment and control of driveline dynamics is only possible if a representative model is available. A driveline model enables engineers to estimate the system’s reactions for different torque inputs and shows how those inputs impact drivability and comfort. Modelling methods in literature are frequently designed only for internal combustion engine vehicles, disregarding electrified powertrains. To remedy that, a modelling method for electrified drivelines is presented. It simplifies the inclusion of dynamic factors such as road resistances, flexibility, friction, and inertias. The method consists in drawing a vertical diagram of the drivetrain topology where each key component is represented as a block. Newton’s second law is used to balance torque in each block connection, from propelling systems to the wheels. State variables and inputs are defined accounting for the powertrain topology.
Technical Paper

A Review of Production Multi-Motor Electric Vehicles and Energy Management and Model Predictive Control Techniques

2024-04-09
2024-01-2779
This paper presents the characteristics of more than 260 trim levels for over 50 production electric vehicle (EV) models on the market since 2014. Data analysis shows a clear trend of all-wheel-drive (AWD) powertrains being increasingly offered on the market from original equipment manufacturers (OEMs). The latest data from the U.S. Environmental Protection Agency (EPA) shows that AWD EVs have seen a nearly 4 times increase in production from 21 models in 2020 to 79 models in 2023. Meanwhile single axle front-wheel-drive (FWD) and rear-wheel-drive (RWD) drivetrains have seen small to moderate increases over the same period, going from 9 to 11 models and from 5 to 12 models, respectively. Further looking into AWD architectures demonstrates dual electric machine (EM) powertrains using different EM types on each axle remain a small portion of the dual-motor AWD category.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

An Adaptive Flux-Weakening Strategy Considering High-Speed Operation of Dual Three-Phase PM Machine for Electric Vehicles

2024-04-09
2024-01-2212
Dual three-phase (DTP) permanent magnet synchronous machines (PMSMs) are becoming attractive for electric vehicle (EV) propulsion systems in the automotive industry. Flux-weakening (FW) control technique is important to ensure DTP-PMSMs operating in high-speed range. This paper proposes an adaptive FW control algorithm to ensure better performance and stability in variant speeds. A small-signal model is developed to obtain the adaptive gain for a constant controller bandwidth regardless of the speeds. The proposed FW controller is implemented, tuned, and validated on a DTP-PMSM experiment setup. The proposed method improves the FW performances in terms of torque and system stability, compared with the non-adaptive FW controller. Moreover, the harmonics analysis shows an inevitable xy-components affecting the overall performances. The effect of xy controller gain is further investigated for the FW operation.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Technical Paper

Automatic Calibrations Generation for Powertrain Controllers Using MapleSim

2018-04-03
2018-01-1458
Modern powertrains are highly complex systems whose development requires careful tuning of hundreds of parameters, called calibrations. These calibrations determine essential vehicle attributes such as performance, dynamics, fuel consumption, emissions, noise, vibrations, harshness, etc. This paper presents a methodology for automatic generation of calibrations for a powertrain-abstraction software module within the powertrain software of hybrid electric vehicles. This module hides the underlying powertrain architecture from the remaining powertrain software. The module encodes the powertrain’s torque-speed equations as calibrations. The methodology commences with modeling the powertrain in MapleSim, a multi-domain modeling and simulation tool. Then, the underlying mathematical representation of the modeled powertrain is generated from the MapleSim model using Maple, MapleSim’s symbolic engine.
Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Journal Article

Battery Entropic Heating Coefficient Testing and Use in Cell-Level Loss Modeling for Extreme Fast Charging

2020-04-14
2020-01-0862
To achieve an accurate estimate of losses in a battery it is necessary to consider the reversible entropic losses, which may constitute over 20% of the peak total loss. In this work, a procedure for experimentally determining the entropic heating coefficient of a lithium-ion battery cell is developed. The entropic heating coefficient is the rate of change of the cell’s open-circuit voltage (OCV) with respect to temperature; it is a function of state-of-charge (SOC) and temperature and is often expressed in mV/K. The reversible losses inside the cell are a function of the current, the temperature, and the entropic heating coefficient, which itself is dependent on the cell chemistry. The total cell losses are the sum of the reversible and irreversible losses, where the irreversible losses consist of ohmic losses in the electrodes, ion transport losses, and other irreversible chemical reactions.
Technical Paper

Chevrolet Bolt Electric Vehicle Model Validated with On-the-Road Data and Applied to Estimating the Benefits of a Multi-Speed Gearbox

2022-03-29
2022-01-0678
This paper presents a model for predicting the energy consumption of a 2017 Chevrolet Bolt electric vehicle. The model is validated using 93 measured drive cycles covering in excess of 10,600 kilometres of driving and temperatures from −8 to 32 °C. The mechanical road load acting on the vehicle is calculated via ABC parameters from the publicly available US Environmental Protection Agency (EPA) Annual Certification Data database. The vehicle model includes wheel diameter, gear ratio, rated electric machine torque and power, 12V accessory load based off measurements, measured electric machine efficiency obtained from a publication from General Motors, and modelled inverter efficiency. Assumptions are made regarding gearbox losses as well. To ensure accuracy under real-world conditions, road grade, temperature effects, and heating and cooling energy are included as well. The model predicts an EPA range of 380 km, which is very close to the 383 km rating.
Technical Paper

Comparative Corrosion Evaluation of Ferritic Stainless Steels Utilized in Automotive Exhaust Applications

2018-04-03
2018-01-1407
The purpose of this work was to initiate a comparative evaluation of the aqueous corrosion resistance of ferritic stainless steels currently used to fabricate automotive exhaust systems. Both acid condensate and double loop electrochemical potentiokinetic reactivation (DL-EPR) testing using both as-received and heat treated test coupons prepared from Types 409, 409Al, 436 and 439 stainless steel was conducted for this purpose. A truncated version of an in-house acid condensate testing protocol revealed that Type 409Al stainless steel was the most resistant to corrosion of the four ferritic stainless steels examined, whereas Type 409 stainless steel was the least resistance to corrosion.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Damage and Formability of AKDQ and High Strength DP600 Steel Tubes

2005-04-11
2005-01-0092
Using standard tensile testing methods, the material properties of AKDQ and DP600 steels tubes along the axial direction were determined. A novel in-situ optical strain mapping system ARAMIS® was utilized to evaluate the strain distribution during tensile testing along the axial direction. Microstructural and damage characterization was carried out using microscopy and image analysis techniques to compare the damage evolution and formability of both materials. Failure in both steels was observed to occur via a ductile failure mode. AKDQ was found to be the more formable material as it can achieve higher strains, total elongations and thinning prior to failure than the higher strength DP600.
X