Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

An Evaluation of Friction Effects on Hypoid Gear Life and Bearing Load

2000-09-11
2000-01-2626
Premature parts breakdown in the final drive of heavy vehicle powertrains in vehicles equipped with high power retarders leads one to believe that the coasting mode gear forces may be higher than anticipated. There is limited experimental data that supports this hypothesis in the observation of high bearing load and gear bending stress in coast mode. However, without an in-depth analysis, it is unclear exactly how the high load is generated. There are several suggested causes: friction, gear geometry, and system compliance. The present study focuses on the effects of hypoid gear friction on the powertrain. Analytical expressions of the gear friction vector as a function of gear pressure, pitch and spiral angles, spiral hand and directions of rotation and applied torque were derived and examined. Attempts were made to correlate test-measured quantities and results from analytical models with and without the consideration of gear friction.
Technical Paper

Analytical Definition and Application of Straight Bevel Gear Tooth Form

1999-11-15
1999-01-3745
Although the methodology of straight bevel gear tooth form generation has been known for quite some time, few references are available in the literature. Presented in this paper are the general numerical procedures of spherical involute and octoid tooth form generations. We have proven that a tooth form generated from the latter approach, by simulating the rotation of a crown gear, matches exactly with the one from the former approach of unwraping a wire from a base circle. The advantage of using general numerical procedures rather than closed form equations is the flexibility of generating both standard and modified gear tooth profiles. In making the forging die, the gear tooth form must be developed with considerations of both the theoretical optimal geometry, and the dimensional compensation for heat treatment distortion.
Technical Paper

Contact Durability Analysis Methodology and Applications in Vehicle Powertrain Components Design

1999-09-13
1999-01-2813
Contact stress analysis or surface fatigue life prediction is a subject frequently encountered in powertrain component designs. Examples are the design of gears, bearings, cams, and load ramps. In many cases, design evaluations rely on simple analysis, component supplier's suggestions, and prototype testing. One viable technology trend in modern engineering, however, is to use computer simulation and analysis as a design guide. It is universally acknowledged that up-front computer-aided-engineering (CAE) will reduce the product development cycle time and cost, and improve product quality. In addition, this approach provides a good platform for technology growth. Scattered examples on surface durability analytical modeling techniques are available in the literature. But, the most suitable engineering tools for routine product design support are yet to be developed. Currently, a semi-empirical approach is widely used in the industry.
Technical Paper

Heavy and Medium Duty Vehicle Powertrain Virtual Prototyping

1998-11-16
982824
The uniqueness of heavy and medium duty vehicle powertrain design, compared to that of passenger cars, is two fold: vast variations exist from vehicle to vehicle because of mission requirements, and powertrain components are sourced from a diverse group of suppliers. Vehicle powertrain design involves selection of the appropriate major components, such as the engine, clutch, transmission, driveline, and axle. At this design stage the main focus is on power matching, to ensure that the vehicle's performance meets specifications of gradability, maximum speed, acceleration, fuel economy, and emissions[1, 2, 3, 4 and 5]. The general practice also demands that the durability of the drivetrain components for the intended vocation or application be verified. Equally important but often neglected in the design phase is the system's NVH (Noise Vibration and Harshness) performance, such as torsional vibration, U-joint excitation, and gear rattle.
Technical Paper

Heavy and Medium Duty Vehicle Suspension-Related Performance Issues and Effective Analytical Models for System Design Guide

1999-11-15
1999-01-3781
The uniqueness and challenge of heavy and medium duty vehicle manufacturing is that the vehicle&s subsystems and major components are procured from different suppliers. As a consequence, engineering task coordination for total vehicle performance optimization is required even if the intended design modification is only on one component. In the case of suspension design, related subsystems such as the drive axle, driveline, brake system, steering system, and engine mounts should all be included for review. The related potential problems for study fall into three categories, namely: function, durability, and NVH. The effective approach in addressing all these issues early in the design stage is through computer modeling and dynamic system simulation of the suspension system and related subsystems.
Technical Paper

Product Development Support with Integrated Simulation Modeling

1999-09-13
1999-01-2812
The effectiveness of computer simulation modeling for product development support is evidenced by its wide-spread usage. For example, finite element analysis (FEA), has been found indispensable for reducing product development cycle time and cost as well as enhancing product quality. Along with other pertinent information, accurately defined loads are necessary for conducting effective FEA for product design optimizations. FEA results using rough estimated loads often do not provide a good basis for design improvement. A better approach is to define loads through system simulation modeling. The development of such a model involves the synthesis of a wide range of product design knowledge along with a systematic process for model correlation. As the technology becomes matured, there is a strong drive to make the process more efficient by integrating the different types of simulation techniques. Two examples are given in this paper.
Technical Paper

Simulation Modeling Guided Transmission Design - A Case Study

2000-09-11
2000-01-2641
Automotive transmission design quality is generally judged by the vehicle's performance. Its acceleration, gradeability, maximum speed, terminal speeds, fuel economy and emissions provide these measures. These performance characteristics are optimized through the design process. This process, however, is iterative in nature and requires informed decision making to produce a design that is cost effective and excels in quality. In modern engineering, computer simulation plays an important role in the product design and development process. This paper provides a case study of the design and analysis of a heavy truck automatic transmission. It demonstrates the use of computer simulation models in generating and evaluating innovative design ideas.
X