Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

CFD Modeling and Experimental Analysis of a Homogeneously Charged Turbulent Jet Ignition System in a Rapid Compression Machine

2017-03-28
2017-01-0557
Three dimensional numerical simulation of the transient turbulent jet and ignition processes of a premixed methane-air mixture of a turbulent jet ignition (TJI) system is performed using Converge computational software. The prechamber initiated combustion enhancement technique that is utilized in a TJI system enables low temperature combustion by increasing the flame propagation rate and therefore decreasing the burn duration. Two important components of the TJI system are the prechamber where the spark plug and injectors are located and the nozzle which connects the prechamber to the main chamber. In order to model the turbulent jet of the TJI system, RANS k-ε and LES turbulent models and the SAGE chemistry solver with a reduced mechanism for methane are used.
Journal Article

Comparison of Excess Air (Lean) vs EGR Diluted Operation in a Pre-Chamber Air/Fuel Scavenged Dual Mode, Turbulent Jet Ignition Engine at High Dilution Rate (~40%)

2021-04-06
2021-01-0455
Charge dilution is widely considered as one of the leading strategies to realize further improvement in thermal efficiency from current generation spark ignition engines. While dilution with excess air (lean burn operation) provides substantial thermal efficiency benefits, drastically diminished NOx conversion efficiency of the widely used three-way-catalyst (TWC) during off-stoichiometric/lean burn operation makes the lean combustion rather impractical, especially for automotive applications. A more viable alternative to lean operation is the dilution with EGR. The problem with EGR dilution has been the substantially lower dilution tolerance limit with EGR and a consequent drop in thermal efficiency compared to excess air/lean operation. This is particularly applicable to the pre-chamber jet ignition technologies with considerably higher lean burn capabilities but much lower EGR tolerance due to the presence of a high fraction of residuals inside the pre-chamber.
Technical Paper

Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization

2012-04-16
2012-01-0823
Natural gas is a promising alternative fuel as it is affordable, available worldwide, has high knock resistance and low carbon content. This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas at several air to fuel ratios and speed-load operating points. In addition, Turbulent Jet Ignition optical images are compared to the baseline spark ignition images at the world-wide mapping point (1500 rev/min, 3.3 bar IMEPn) in order to provide insight into the relatively unknown phenomenon of Turbulent Jet Ignition combustion. Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine.
Technical Paper

The Effect of Exhaust Gas Recirculation (EGR) on Fundamental Characteristics of Premixed Methane/Air Flames

2020-04-14
2020-01-0339
Over the years, many studies have examined the natural gas flame characteristics with either CO2, H2O, or N2 dilution in order to investigate the exhaust gas recirculation (EGR) effect on the performance of natural gas vehicles. However, studies analyzing the actual EGR concentration are very scarce. In the present study, spherically expanding flames were employed to investigate the EGR effect on the laminar flame speed (LFS) and the burned gas Markstein length (Lb) of premixed CH4/air flames at 373 K and 3 bar. The EGR mixture was imitated with a mixture of 9.50% CO2 + 19.01% H2O + 71.49% N2 by mole. EGR ratios of 0%, 5%, 10%, and 15% were tested. Experimental results show that LFS values are lowered by 20-23%, 38-43% and 53-54% due to 5%, 10% and 15% EGR, respectively. Additionally, it was observed that Lb values slightly increase at high equivalence and EGR ratios, where CH4 flames are more stable and more stretched.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
X