Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

A Novel Technique to Determine Free-Stream Velocity from Ground-Based Anemometric Measurements During Track Tests

2016-09-27
2016-01-8023
A novel method was developed to predict the free-stream velocity experienced by a traveling vehicle based on track-side anemometric measurements. The end objective of this research was to enhance the reliability of the prediction of free-stream conditions in order to improve the accuracy of aerodynamic drag coefficient (CD) assessments from track tests of surface vehicles. Although the technique was applied to heavy-duty vehicles in the present work, it is equally applicable to any vehicle type. The proposed method is based on Taylor’s hypothesis, a principle applied in fluid mechanics to convert temporal signals into the spatial domain. It considers that the turbulent wind velocity fluctuations measured at one point are due to the "passage of an unchanging pattern of turbulent motion over the point". The method is applied to predict the wind velocity that the vehicle will experience as it encounters a wind pattern detected earlier by an anemometer located upwind.
Journal Article

A System for Simulating Road-Representative Atmospheric Turbulence for Ground Vehicles in a Large Wind Tunnel

2016-04-05
2016-01-1624
Turbulence is known to influence the aerodynamic and aeroacoustic performance of ground vehicles. What is not thoroughly understood are the characteristics of turbulence that influence this performance and how they can be applied in a consistent manner for aerodynamic design and evaluation purposes. Through collaboration between Transport Canada and the National Research Council Canada (NRC), a project was undertaken to develop a system for generating road-representative turbulence in the NRC 9 m Wind Tunnel, named the Road Turbulence System (RTS). This endeavour was undertaken in support of a larger project to evaluate new and emerging drag reduction technologies for heavy-duty vehicles. A multi-stage design process was used to develop the RTS for use with a 30% scale model of a heavy-duty vehicle in the NRC 9m Wind Tunnel.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Journal Article

CAM-Based Planning, Programming and Execution of Large-Scale Machining Operations by a Robot-Mounted Gantry System

2011-10-18
2011-01-2651
This paper examines issues related to planning, programming and execution of machining operations by a robot in the context of machining large parts with complex geometries by a gantry-mounted robotic system. Parts were created from surface data in a CAD/CAM environment. The same environment was used to generate tool paths using a conventional machine tool approach. These paths were converted to robot trajectories and validated using mathematical kinematic models of the robotic system. Validation was performed according to various criteria related to process performance. Associated robot programs were then automatically generated. The manufacturing cell was progressively integrated according to requirements resulting from iterative process characterization. A metrology-based calibration procedure was designed that considerably improved the system's positioning precision.
Technical Paper

Carded Recycled Carbon Fiber Mats for the Production of Thermoset Composites via Infusion/Compression Molding

2013-09-17
2013-01-2208
The use of carbon fiber reinforced thermoset composites has doubled in the last decade raising questions about the waste generated from manufacturing and at end-of-life, especially in the aircraft industry. In this study, 2.5 cm long carbon fibers were recovered from thermoset composite waste using a commercial scale pyrolysis process. Scanning electron microscopy, density measurements, single filament tensile testing as well as micro-droplet testing were performed to characterize the morphology, mechanical properties, and surface adhesion of the fibers. The recycled fibers appeared to be mostly undamaged and clean, exhibiting comparable mechanical properties to virgin carbon fibers. A carding process followed by an ultrasound treatment produced randomly aligned recycled fiber mats. These mats were used to fabricate composite plates, with fiber volume fractions up to 40 %, by infusion / compression molding.
Technical Paper

Controlling the Forming of Thermoplastics through Forming Power

2013-04-08
2013-01-0602
Controlling the forming of large thermoplastic parts from a simulation requires very precise predictions of the pressure and volume profile evolution. Present pressure profile based simulations adequately predict the thickness distribution of a part, but the forming pressure and volume profile development lack the precision required for process control. However new simulations based on the amount of power required to form the material can accurately predict these pressure and volume profiles. In addition online monitoring of the forming power on existing machines can be easily implemented by installing a flow rate and pressure meter at the gas entrance, and if necessary, exits of the part. An important additional benefit is that a machine thus equipped can function as an online rheometer that can characterize the viscosity of the material at the operating point by tuning the simulation to the online measurements.
Technical Paper

Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research

2011-06-13
2011-38-0079
This paper describes the commissioning of a linear compressor cascade rig for ice crystal research. The rig is located in an altitude chamber so the test section stagnation pressure, temperature and Mach number can be varied independently. The facility is open-circuit which eliminates the possibility of recirculating ice crystals reentering the test section and modifying the median mass diameter and total water content in time. As this is an innovative facility, the operating procedures and instrumentation used are discussed. Sample flow quality data are presented showing the distribution of velocity, temperature, turbulence intensity and ice water concentration in the test section. The control and repeatability of experimental parameters is also discussed.
Technical Paper

Evaluation of Visual Failure versus Aerodynamic Limit for a Snow Contaminated Anti-Iced Wing Section during Simulated Takeoff

2019-06-10
2019-01-1972
Under contract to Airlines for America (A4A), APS Aviation Inc. (APS), in collaboration with the National Research Council of Canada (NRC), completed an aircraft ground icing exploratory research project at the NRC 3 m × 6 m Wind Tunnel in Ottawa in January 2019. The purpose of this project was to investigate the feasibility of using aerodynamic data to evaluate the performance of contaminated anti-icing fluid, rather than the traditional visual fluid failure indicators that are used to develop Holdover Times (HOTs). The aerodynamic performance of a supercritical airfoil model with anti-icing fluids and snow contamination was evaluated against the clean, dry performance of the airfoil in order to calculate the associated aerodynamic penalty. The visual failure of the fluid was also evaluated for each run, and the visual and aerodynamic results were compared against each other for each contamination exposure time.
Technical Paper

Ice Crystal Environment - Modular Axial Compressor Rig: Comparisons of Ice Accretion for 1 and 2 Stages of Compression

2023-06-15
2023-01-1397
In 2021 the Federal Aviation Administration in collaboration with the National Research Council of Canada performed research on altitude ice crystal icing of aircraft engines using the modular compressor rig, ICE-MACR, in an altitude wind tunnel. The aim of the research campaign was to address research needs related to ice crystal icing of aircraft engines outlined in FAA publication Engine Ice Crystal Icing Technology Plan with Research Needs. This paper reports the findings on ice accretion from a configuration of ICE-MACR with two compression stages. Inherent in two-stage operation is not just additional fracturing and heating by the second stage but also higher axial velocity and potentially greater centrifuging of particles. These factors influence the accretion behavior in the test article compared to single stage accretion.
Technical Paper

Icing Test and Measurement Capabilities of the NRC’s Gas Turbine Laboratory

2019-06-10
2019-01-1943
The National Research Council’s Gas Turbine Laboratory provides industry leading icing facilities that allow manufacturers to develop, validate and certify new products for flight in adverse conditions. This paper shows how NRC measurement techniques are used across the facilities, and presents a literature-review of recently developed capabilities. The overview includes new details on some facilities, and future capabilities that are in development or planned for the near future. Methods developed at the NRC for characterizing inclement conditions are discussed and include the Isokinetic Probe, Particle Shadow Velocimetry, the Particle Detection Probe, and a size-binned real-time thermodynamic evaporation model.
Technical Paper

In-Cabin Aeroacoustics of a Full-Scale Transport Truck

2016-09-27
2016-01-8143
The noise generated by the flow of air past a transport truck is a key design factor for the manufacturers of these vehicles as the sound levels in the cabin are a significant component of driver comfort. This paper describes a collaboration between Volvo GTT and the National Research Council Canada to measure the in-cabin aeroacoustics of a full-scale cab-over tractor in the NRC 9 m Wind Tunnel. Acoustic instrumentation was installed inside the tractor to record cabin noise levels and externally to acquire tunnel background noise data. Using a microphone mounted on the driver’s-side tunnel wall as a reference to remove variations in background noise levels between data points, differences in cabin noise levels were able to be detected when comparing the tractor with different configurations. The good repeatability of the data allowed for differences of as little as 0.5 dB to be measured.
Technical Paper

Mechanical Property Behaviour of Rheocast 319 Alloys with and without Iron Additions

2011-04-12
2011-01-1089
Cast aluminum-silicon alloys have witnessed a notable increase in use in the automotive and transport industry. The ability of these alloys to be easily cast into complex shapes coupled with a favorable strength-to-weight ratio has given them an edge over cast irons. One particular area of casting which has received further and further attention is the area of semi-solid casting, where an alloy casting is prepared as slurry with flow properties that resemble both solid and liquid. In the present work, the effects of iron additions on the mechanical properties of a 319 semi-solid alloy were studied. This alloy was prepared using the SEED process, as developed by Rio Tinto Alcan in collaboration with the Aluminum Technology Centre of NRC Canada. The SEED (Swirled Enthalpy Equilibration Device) process is a novel rheocasting method which yields a semi-solid slurry from the mechanical stirring and cooling of the molten aluminum.
Technical Paper

Optimization of Casting Parameters on an Improved AA6061 Aluminum Alloy for Semi-Solid Die Casting

2010-04-12
2010-01-0225
A study was conducted to assess the performance and castability of a new AA6061 aluminum alloy variant specially designed for semi-solid pressure die casting. The AA6061 alloy has very desirable mechanical properties for the fabrication of automotive parts. However, it has limited castability due to its low silicon content. It is not well suited for shape casting processes which are, for their part, very interesting in terms of production costs for complex-shaped automotive components. In an effort to meet automotive industry requirements, new AA6061 alloy variants have been developed by Rio Tinto Alcan researchers over the past years, aiming to improve the castability of the alloy while maintaining its desirable mechanical properties, by increasing its die-filling capacity, decreasing its hot tearing tendency. The study described herein is an example of how the performance of a single variant was assessed in terms of castability. The full study was conducted on six separate variants.
Journal Article

Reduction of Hot Tears: Alloy and Casting Process Optimization Using Neutron Diffraction

2010-04-12
2010-01-0748
The continued need of vehicle weight reduction provides impetus for research into the development of novel automotive casting alloys and their processing technologies. Where possible, ferrous components are being replaced by aluminum (Al) and magnesium (Mg) alloy counterparts. This transition, however, requires a systematic optimization of the alloys and their manufacturing processes to enable production of defect-free castings. In this context, prevention of hot tears remains a challenge for Al and Mg alloy thin-wall castings. Hot tears form in semi-solid alloy subjected to localized tensile stress. Classical methods of stress measurement present numerous experimental limitations. In this research, neutron diffraction (ND) was used as a novel tool to obtain stress maps of castings and to quantify the effect of two processes used to eliminate hot tears in permanent mold castings: 1) increasing of the mold temperature during casting of Mg alloys, and 2) grain refinement of Al alloys.
Technical Paper

Repair Issues for Corroded Fuselage Lap Joints

1999-10-19
1999-01-5529
The National Research Council Canada has collected a large number of corroded and non-corroded fuselage lap joints from retired and operational aircraft. A number of these corroded joints have been disassembled in order to quantify the level of corrosion. During the disassembly, it was often observed that common repair techniques resulted in damage to the structure. The damage observed was significant enough to raise concerns regarding the effect of the repair techniques on structural integrity. This paper describes the different types of damage found.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Technical Paper

The Fate of Chlorine and Heavy Metals During Pyrolysis of Automobile Shredder Residue*

1999-03-01
1999-01-0671
One of the major sources of chlorine in automobiles is polyvinyl chloride (PVC). When old discarded automobiles enter the recycling loop by far the largest percent of this material finds its way into the solid waste fraction known as automobile shredder residue (ASR). While the majority of this waste is currently disposed of in landfills new processes are currently being evaluated to recycle and recover the valuable resources contained in this solid waste. Pyrolysis, the thermal cracking of the polymeric materials present in ASR, to recover the petrochemical hydrocarbons is one such technology which is receiving attention. However, like combustion with energy recovery, the pyrolysis process is receiving close scrutiny in terms of its environmental impact. These concerns have centered around the fate of the chlorine and the heavy metals present in the ASR.
X