Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A New System for Independently Controlling Braking Force Between Inner and Outer Rear Wheels

1989-02-01
890835
This paper presents a new system for controlling the braking force between the inner and outer wheels in a turn independently. Vehicle cornering performance has improved noticeably in recent years thanks to advances achieved in tire and suspension technology. Due to this improvement, vehicle handling characteristics during braking have taken on added importance. To achieve stabler handling properties during braking in a turn, a new evaluation method is being used at Nissan to analyze vehicle directional stability. The analytical results show that decreasing the yaw moment before wheel locking occurs is effective in achieving stabler handling. An effective approach to decreasing the yaw moment is to control the braking force between the inner and outer wheels independently. Base on these analytical results and experimental data obtained with actual vehicles, a new system has been developed that provides such independent control over the braking force.
Journal Article

A Novel Multiple DC-Inputs Direct Electric-Power Converter

2009-04-20
2009-01-0293
A new multiple dc-inputs direct electric-power converter (D-EPC) has been developed. It is placed between multiple dc power sources and an ac motor, eliminating the need for a dc/dc converter generally used in conventional converter/inverter systems. The D-PEC can improve the efficiency of the motor drive system with a more compact size. Its power distribution control is carried out by allotting voltage ratios to each of two different dc power sources on a time average basis. A new pulse-width-modulation (PWM) generation technique to drive switching devices in the D-EPC has also been developed. Tests have verified that the three-phase ac motor can be operated by controlling the power distribution between the two power sources.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

A Study of a Practical Numerical Analysis Method for Heat Flow Distribution in the Engine Compartment

1993-04-01
931081
The thermal environment in the automotive engine compartment is expected to become increasingly severe in the years ahead owing to the installation of a large-size manifold catalyst to reduce exhaust emissions, among other factors. This will make it even more important to analyze the engine compartment layout in terms of heat flow considerations at the design conceptualization stage of a new vehicle. In this research, a flow analysis program called DRAG4D was applied to find the flow velocity distribution and ambient air temperature distribution in the engine compartment during driving, idling and after the engine was turned off. This original program developed at Nissan takes into account the effects of the energy balance and buoyancy, and provides a practical level of prediction accuracy. The time required to create an analytical model and perform the computations has been shortened by using an automatic grid generation function, based on a solid model, and experimental equations.
Technical Paper

A Study of the Mechanism Causing High-Speed Brake Judder

1998-02-23
980594
Brake judder caused by uneven heat spots on brake disc surfaces is a major issue in improving vehicle quality. This is especially true for rumble that occurs during high-speed braking. In order to determine the excitation mechanism of brake judder, it is necessary to measure the dynamic brake disc geometry and temperature distribution during actual operation on the road. A noncontact sensor system, suitable for a high temperature environment, was used to monitor these parameters, making it possible to visualize heat spots transiently. The data obtained revealed the influence of pad and disc parameters on heat spot formation.
Technical Paper

A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs

1998-02-23
980822
The mechanism causing the micro slip characteristic of a metal CVT belt during torque transmission was analyzed, focusing on the gap distribution between the elements. It was hypothesized that gaps between the elements cause slip to occur between the elements and the pulleys when the belt is squeezed between the two halves of the pulleys, and the slip ratio was calculated theoretically on that assumption. The μ-v (friction coefficient versus sliding velocity) characteristic between the elements and the pulleys was measured and the results were used in calculating the slip ratio. As a result, a simulation procedure was developed for predicting the slip-limit torque of the belt on the basis of calculations. The slip ratio found by simulation and the calculated slip-limit torque showed good quantitative agreement with the experimental data, thereby confirming the validity of the simulation procedure.
Technical Paper

A System for Neutralizing Static Electricity on the Human Body in a Vehicle

2008-04-14
2008-01-0786
People often feel discomfort when entering or exiting a vehicle because of a static electric shock. In the electronics industry, ionizers have been developed to prevent electrostatic discharges and contamination sticking around or on circuit components. Ionizers incorporate corona discharge principles to neutralize the static electric field. Using this idea, we developed an in-vehicle system to neutralize the human body charge. To accomplish this, the mechanism by which the human body attains a charge when exiting a vehicle was first defined. That definition was then used to determine the design characteristics of the system.
Technical Paper

Achieving a Vehicle Level Sound Quality Target by a Cascade to System Level Noise and Vibration Targets

2005-05-16
2005-01-2394
This paper describes a process to achieve a pre-defined vehicle level interior sound quality target, by a sound engineering cascade to targeted noise and vibration development at the system level. Air-borne and structure-borne contributors to interior sound are identified at the system level using a comprehensive Transfer Path Analysis (TPA) in both the frequency and time domains. For significant contributors, the relative importance of the source system (powertrain) and path system (vehicle) are determined. System level changes are simulated, and their effect on interior sound evaluated using TPA. A set of feasible changes is identified that, when combined, achieves the vehicle level interior sound quality target. This set of changes defines system level targets for noise and vibration development, cascaded from the vehicle level target.
Journal Article

Aerodynamic Sensitivity Analysis of Wheel Shape Factors

2019-04-02
2019-01-0667
Wheels play an important role in determining the aerodynamic drag of passenger vehicles. This is because the contribution of wheels to aerodynamic drag comes from not only the wheels themselves, but also from the interference effect between wheel wakes and the base wake. As far as the authors are aware, there have been no reports about aerodynamic drag sensitivity to wheel shape factors for different vehicle types and different exterior body shapes. The purpose of this study was to clarify CD sensitivity to wheel shape factors for a sedan and an SUV, including different rear fender shapes. Many different wheel configurations were investigated in terms of the CD, base pressure and flow fields in wind tunnel tests. Multiple regression analyses were conducted to clarify CD sensitivity to each wheel shape factor based on the test data. This study revealed high CD sensitivity factors for both the sedan and SUV.
Technical Paper

An Evaluation of Multiplexing System for Automotive Distributed Control

1991-02-01
910718
On board multiplexing communication system is regarded as a necessary technology for the future of electronic system in automobiles. Many companies are developing multiplexing systems and the ISO and SAE are active in establishing standards for communication protocols. The proposed communication protocol specifications have different specifications. Consequently, no compatible evaluation standards existed, and it was difficult to compare one protocol to another. Therefore, to assist the standardization activities of the IS0 and SAE, we have developed an evaluation method for distributed multiplexed communication systems and evaluated each of the proposed protocols using this method. These evaluations were performed from the point of view of the future users of these systems. In this paper we present the results of the experiments on distributed multiplexed communication systems each of which consists of communication IC and the proposed physical layer.
Technical Paper

Analysis of Disc Brake Squeal, 1992

1992-02-01
920553
Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
Technical Paper

Analysis of Steering Force at Low Speed

1979-02-01
790739
From the view point of vehicle weight reduction and saving resources, it would be desirable to decrease the steering effort eliminating the assistance of power. Therefore, we have analyzed the steering effort at low vehicle speeds where steering effort is great, and have introduced a theoretical model based on the contact surface deflection recovering process of rolling tires. This deflection comes from the lateral rigidity and the total deflection of tires. The following results were obtained from this study. As the vehicle speed increases, the steering effort decreases exponentially. As the steering speed increases or as the vehicle speed decreases, the steering effort increases and the effort approaches the final value which equals the static steering effort. The static steering effort is not relative to steering speed. These theoretical results are supported by vehicle experiments.
Technical Paper

Analysis of Vibrational Modes of Vehicle Steering Mechanisms

1971-02-01
710627
An analysis was made of vibration phenomena in the steering system of a vehicle, when the front wheels have some amount of unbalance. The program included vehicle running tests and bench tests to ascertain some of the factors influencing vibration behavior. A mathematical model of the vibration system was simulated on a digital computer in as much detail as possible. The resultant understanding of the dynamics of the system as a whole led to an extensive theoretical analysis of selected key parameters.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
Technical Paper

Automatic Transmission Shift Schedule Control Using Fuzzy Logic

1993-03-01
930674
The use of automatic transmissions is continually increasing because of their ease of operation. Transmission performance requirements that have become more important in recent years include smooth shift quality and a shift schedule that matches the driver's intentions. An electronically controlled automatic gearbox, which sets the shift schedule according to the vehicle speed and throttle valve opening, provides a dramatic improvement in shift quality over its hydraulically controlled counterpart. However, even with an electronically controlled automatic transmission, shift hunting occurs when driving uphill or towing an object Based on the use of fuzzy logic, a technique has been developed for estimating running resistance, represented by the road gradient. This technique has been incorporated in a new shift schedule control method that eliminates shin hunting Research is now under way on a fuzzy logic technique for inferring the driver's intention to accelerate
Technical Paper

Computer Simulation of Vehicle Fuel Economy and Performance

1986-03-01
860364
A simulation system has been developed for making comprehensive predictions and assessments of the various and interrelated indices of vehicle performance. This system draws upon a data base containing information on the characteristics of the different units making up a vehicle. The system includes fuel economy and emissions calculation programs incorporating a large number of evaluation items. It also features an acceleration calculation program by which the transient characteristics of a turbocharger can be studied and a vehicle exterior noise program that makes accurate predictions of the pass-by noise level during acceleration. Equipped with a large number of calculation functions the system is an effective tool for improving total vehicle performance.
X