Refine Your Search

Topic

Author

Search Results

Technical Paper

A PEM Fuel Cell Distributed Parameters Model Aiming at Studying the Production of Liquid Water Within the Cell During its Normal Operation: Model Description, Implementation and Validation

2011-04-12
2011-01-1176
One of the major issues coming out from low temperature fuel cells concerns the production of water vapor as a chemical reaction (between hydrogen and oxygen) by-product and its consequent condensation (at certain operating conditions), determining the presence of an amount of liquid water affecting the performance of the fuel cell stack: the production and the quantity of liquid water are strictly influenced by boundaries and power output conditions. Starting from this point, this work focuses on collecting all the required information available in literature and defining a suitable CFD model able to predict the production of liquid water within the fuel cell, while at the same time localizing it and determining the consequences on the PEM cell performances.
Technical Paper

Calculating Heavy-Duty Truck Energy and Fuel Consumption Using Correlation Formulas Derived From VECTO Simulations

2019-04-02
2019-01-1278
The Vehicle Energy Consumption calculation Tool (VECTO) is used in Europe for calculating standardised energy consumption and CO2 emissions from Heavy-Duty Trucks (HDTs) for certification purposes. The tool requires detailed vehicle technical specifications and a series of component efficiency maps, which are difficult to retrieve for those that are outside of the manufacturing industry. In the context of quantifying HDT CO2 emissions, the Joint Research Centre (JRC) of the European Commission received VECTO simulation data of the 2016 vehicle fleet from the vehicle manufacturers. In previous work, this simulation data has been normalised to compensate for differences and issues in the quality of the input data used to run the simulations. This work, which is a continuation of the previous exercise, focuses on the deeper meaning of the data received to understand the factors contributing to energy and fuel consumption.
Journal Article

Calibrating a Real-time Energy Management for a Heavy-Duty Fuel Cell Electrified Truck towards Improved Hydrogen Economy

2022-06-14
2022-37-0014
Fuel cell electrified powertrains are currently a promising technology towards decarbonizing the heavy-duty transportation sector. In this context, extensive research is required to thoroughly assess the hydrogen economy potential of fuel cell heavy-duty electrification. This paper proposes a real-time capable energy management strategy (EMS) that can achieve improved hydrogen economy for a fuel cell electrified heavy-duty truck. The considered heavy-duty truck is modelled first in Simulink® environment. A baseline heuristic map-based controller is then retained that can instantaneously control the electrical power split between fuel cell system and the high-voltage battery pack of the heavy-duty truck. Particle swarm optimization (PSO) is consequently implemented to optimally tune the parameters of the considered EMS.
Technical Paper

Characterization of Low Load PPC Operation using RON70 Fuels

2014-04-01
2014-01-1304
The concept of Partially Premixed Combustion is known for reduced hazardous emissions and improved efficiency. Since a low-reactive fuel is required to extend the ignition delay at elevated loads, controllability and stability issues occur at the low-load end. In this investigation seven fuel blends are used, all having a Research Octane Number of around 70 and a distinct composition or boiling range. Four of them could be regarded as ‘viable refinery fuels’ since they are based on current refinery feedstocks. The latter three are based on primary reference fuels, being PRF70 and blends with ethanol and toluene respectively. Previous experiments revealed significant ignition differences, which asked for further understanding with an extended set of measurements. Experiments are conducted on a heavy duty diesel engine modified for single cylinder operation. In this investigation, emphasis is put on idling (600 rpm) and low load conditions.
Technical Paper

Common Rail HSDI Diesel Engine Combustion and Emissions with Fossil / Bio-Derived Fuel Blends

2002-03-04
2002-01-0865
In order to evaluate the potentialities of bioderived diesel fuels, the effect of fueling a 1.9 l displacement HSDI automotive Diesel engine with biodiesel and fossil/biodiesel blend on its emission and combustion characteristics has been investigated. The fuels tested were a typical European diesel, a 50% biodiesel blend in the reference diesel, and a 100% biodiesel, obtained by mixing rape seed methyl ester (RME) and recycled cooking oil (CME). Steady state tests were performed at two different engine speeds (2500 and 4000 rpm), and for a wide range of loads, in order to evaluate the behavior of the fuels under a large number of operating conditions. Engine performance and exhaust emissions were analyzed, along with the combustion process in terms of heat release analysis. Experimental evidences showed appreciably lower CO and HC specific emissions and a substantial increase in NOx levels. A significant reduction of smoke emissions was also obtained.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Development of an Improved Fractal Model for the Simulation of Turbulent Flame Propagation in SI Engines

2005-09-11
2005-24-082
The necessity for further reductions of in-cylinder pollutant formation and the opportunity to minimize engine development and testing times highlight the need of engine thermodynamic cycle simulation tools that are able to accurately predict the effects of fuel, design and operating variables on engine performance. In order to set up reliable codes for indicated cycle simulation in SI engines, an accurate prediction of heat release is required, which, in turn, involves the evaluation of in-cylinder turbulence generation and flame-turbulence interaction. This is generally pursued by the application of a combustion fractal model coupled with semi-empirical correlations of available geometrical and thermodynamical mass-averaged quantities. However, the currently available correlations generally show an unsatisfactory capability to predict the effects of flame-turbulence interaction on burning speed under the overall flame propagation interval.
Technical Paper

Effects of Rapeseed and Jatropha Methyl Ester on Performance and Emissions of a Euro 5 Small Displacement Automotive Diesel Engine

2011-09-11
2011-24-0109
The effects of using neat and blended (30% vol.) biodiesel, obtained from Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The impact of biodiesel usage on engine performance at full load was analyzed for a specifically adjusted ECU calibration: the same torque levels measured under diesel operation could be obtained, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits. In addition, the effects of biodiesel blends on brake-specific fuel consumption and on engine-out exhaust emissions (CO₂, CO, HC, NOx and smoke) were also evaluated at 6 different part load operating conditions, representative of the New European Driving Cycle. Emissions were also measured at the DPF outlet, thus providing information about after-treatment devices efficiencies with biodiesel.
Technical Paper

Energy Storage: Regenerative Fuel Cell Systems for Space Exploration

2011-10-18
2011-01-2624
Future exploration missions, including human missions to the Moon and Mars, are expected to have increasingly demanding operational requirements. Generating electrical power, and also maintaining a specific thermal environment, are both critical capabilities for any mission. In the case of exploration, both a wide range of mission types (robotic, human, ISRU etc.) and a variety of environments exist: from interplanetary space, to the shadow of a lunar crater, to the attenuated and red-shifted lighting on the Martian surface, power requirements must be met. This objective could be met with different technologies. The choice is dictated by the operating conditions and the different types of mission. TAS-I is historically mainly involved in missions related to the space exploration with the presence of astronauts. A typical example is the exploration of the Moon with the installation on the Moon surface of a base inclusive of pressurized habitats and rovers.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Technical Paper

Fluid-Dynamic Modeling and Advanced Control Strategies for a Gaseous-Fuel Injection System

2014-04-01
2014-01-1096
Sustainable mobility has become a major issue for internal combustion engines and has led to increasing research efforts in the field of alternative fuels, such as bio-fuel, CNG and hydrogen addition, as well as into engine design and control optimization. To that end, a thorough control of the air-to-fuel ratio appears to be mandatory in SI engine in order to meet the even more stringent thresholds set by the current regulations. The accuracy of the air/fuel mixture highly depends on the injection system dynamic behavior and to its coupling to the engine fluid-dynamic. Thus, a sound investigation into the mixing process can only be achieved provided that a proper analysis of the injection rail and of the injectors is carried out. The present paper carries out a numerical investigation into the fluid dynamic behavior of a commercial CNG injection system by means of a 0D-1D code.
Technical Paper

Improving the Feasibility of Electrified Heavy-Duty Truck Fleets with Dynamic Wireless Power Transfer

2023-08-28
2023-24-0161
This study assesses the capabilities of dynamic wireless power transfer with respect to range extension and payload capacity of heavy-duty trucks. Currently, a strong push towards tailpipe CO2 emissions abatement in the heavy-duty transport sector by policymakers is driving the development of battery electric trucks. Yet, battery-electric heavy-duty trucks require large battery packs which may reduce the payload capacity and increase dwell time at charging stations, negatively affecting their acceptance among fleet operators. By investigating various levels of development of wireless charging technology and exploring various deployment scenarios for an electrified highway lane, the potential for a more efficient and environmentally friendly battery sizing was explored.
Technical Paper

Injection Strategies Tuning for the Use of Bio-Derived Fuels in a Common Rail HSDI Diesel Engine

2003-03-03
2003-01-0768
The potentialities in terms of engine performance and emissions reduction of pure biodiesel were examined on a Common Rail HSDI Diesel engine, trying to define a proper tuning of the injection strategies to bio-fuel characteristics. An experimental investigation was therefore carried out on a typical European passenger car Diesel engine, fuelled with a soybean oil derived biodiesel. A standard European diesel fuel was also used as a reference. In particular, the effects of an equal relative air/fuel ratio at full load condition were analysed; further, a sensitivity study on the outcome of the pilot injection timing and duration at part load on engine emissions was performed. Potentialities in recovering the performance gap between fossil fuel and biodiesel and in reducing NOx specific emissions, affecting only to a limited extent the biodiesel emission benefit in terms of CO, HC and FSN, were highlighted.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

OPTIBODY: A New Structural Design Focused in Safety

2013-11-27
2013-01-2760
With electric vehicles becoming more and more popular, the classic “general purpose” vehicle concept is changing to a “dedicated vehicle” concept. Light trucks for goods delivery in cities are one of the examples. The European vehicle category L7e fits perfectly in the low power, low weight vehicle requirements for an electric light truck for goods delivery. However, the safety requirements of this vehicle category are very low and their occupants are highly exposed to injuries in the event of a collision. The European Commission co-funded project OPTIBODY (Optimized Structural components and add-ons to improve passive safety in new Electric Light Trucks and Vans) is developing a new structural concept based on a chassis, a cabin a several add-ons. The add-ons will provide improved protection in case of frontal, side and rear impact.
Technical Paper

Octane Rating Methods at High Revolution Speed

1995-10-01
952520
An experimental investigation on a group of unleaded gasolines of different chemical composition has been carried out, in order to analyze their knock behaviour in a mass-produced engine at high revolution speed, to highlight possible inconsistencies with their standard Research and Motor octane numbers and to try to discover explanations for the abovementioned inconsistencies. The investigation has been focused on fuels containing oxygenated compounds, such as alcohols (methanol and ethanol) and ethers (MTBE), with the aim of pointing out the influence of the fuel composition on the octane rating, especially as far as the variation in the stoichiometric air/fuel ratio (due to oxygenated compounds blending) is concerned. In particular, the rating of all the fuels under the same relative air/fuel ratio has shown to be a mandatory condition in order to obtain a proper estimate of antiknock performances. The evaluations obtained are consistent with the standard Motor octane numbers.
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
X