Refine Your Search

Topic

Search Results

Technical Paper

A Fatigue Life Prediction Method of Rubber Material for Automobile Vibration Isolator under Road Load Spectrum

2022-03-29
2022-01-0253
Automobile rubber isolator was subjected to random load cycle for a long time in the service process, and its main rubber material for vibration isolation was prone to fatigue failure. Since the traditional Miner damage theory overlooked the load randomness, it had a prediction error problem. In order to improve the prediction accuracy of rubber fatigue life, the traditional Miner damage theory was modified by random uncertainty theory to predict the rubber fatigue life under random load. Firstly, the rubber dumbbell-shaped test column, which was vulcanized from rubber materials commonly used in vibration isolators, was taken as the research object. The uniaxial fatigue test of rubber under different strain amplitudes and strain mean values was carried out. Then the fatigue characteristic curve of rubber with equivalent strain amplitude as the damage parameter was established.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

A Modeling and Analysis Method of Dynamic Contact Stress Inside an Automotive Ball Joint

2021-04-06
2021-01-0708
A ball joint is an important component of the automotive drive shaft system, as well the contact stress inside the ball joint is an important optimization goal in the design of ball joints. At present, the analysis of the contact stress inside the ball joint mainly focuses on the static contact stress analysis. The static contact stress analysis, however, cannot reflect the change of the contact stress inside the ball joint. In order to analyze the contact stress of the ball joint more effectively, a hybrid flexible and rigid bodies dynamics (HFRBD) model of the ball joint for studying the dynamic contact stress inside the ball joint is proposed. In the HFRBD model, the balls are regarded as the rigid body, while the cage, the inner race and the outer race are regarded as the flexible body. The contact parameters of the contact pairs in the model are determined on the basis of Hertz contact theory.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Analysis and Simulation of Low-Speed Collision of Car Front Bumpers

2018-04-03
2018-01-1460
Bumper systems are vital to improving automotive passive safety and reducing the maintenance cost in low-speed collision. Automotive companies need to develop bumpers with adequate strength, high energy absorption rate, minimum weight and least expense. To shorten the product development period and lower the development cost, four evaluation conditions were proposed to assess the behaviors of car front bumpers based on the three main low-speed collision regulations of the US Part 581, the Canadian CFVSS215 and the European ECE-R42. A finite element method was put forward to model the car front bumper and to analyze the low-speed collision performance of the bumper system. A drop hammer impact test was carried out to verify the validity of the method, and experiment results indicated the correctness of the finite element model.
Technical Paper

Analysis for Dynamic Performances of Engine Front End Accessory Drive System under Accelerating Condition

2020-04-14
2020-01-0399
A model for a generic layout of an engine front end accessory drive system is established. The dynamic performances of the system are obtained via a numerical method. The dynamic performances consist of the oscillation angle of tensioner arm, the slip ratio of each pulley and the dynamic belt tension. In modeling the system, the hysteretic behavior of an automatic tensioner, the loaded torque of the accessory pulley versus the engine speed, the torsional vibration of crankshaft and the creep of the belt are considered. The dynamic performances of the system at steady state and under accelerating condition are analyzed. An example is provided to validate the established model. The measured results show that the torsional vibration of crankshaft is larger and the dynamic performances of the system are different under accelerating conditions, though the acceleration is small.
Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Analysis of the Dynamic Performance of an Engine Front End Accessory Drive System with an Asymmetric Damping Tensioner

2020-04-14
2020-01-0409
The automatic tensioner is an important component of the engine front end accessory drive system (EFEADS). It maintains the tension of the belt steadily and reduces the slip of pulley, which is benefit for improving the life of V-ribbed belt. In this paper, an EFEADS model is established which is considering with the hysteretic behavior and the asymmetry of friction damping of a tensioner. A four-pulley EFEADS is taken as a study subject. The dynamic responses of system, such as the oscillation angle of each pulley, the slip factor of pulley, the oscillation of tensioner arm and the dynamic belt tension are analyzed with symmetric damping and asymmetric damping tensioner. Meanwhile, the influence of asymmetric damping factors of tensioner on the dynamic response of EFEADS is also investigated.
Technical Paper

Calculation and Optimization Methods for the Dynamic Performances of a Power-Train-Subframe Mounting System

2021-04-06
2021-01-0658
A dynamic performance calculating model for a powertrain-subframe mounting system (PSMS) is presented. Calculation methods for determining the dynamic displacements of a powertrain center of gravity (CG), the dynamic displacements of a subframe CG and the dynamic reaction forces of each mount in a PSMS under ground and motor shake excitation are developed in this paper. An optimization procedure based on the genetic algorithm and SQP is developed for reducing resonance peaks of the reaction forces at mounts. A generic PSMS with three powertrain-subframe mounts and four subframe-body mounts is used to validate the optimization method. The optimization results demonstrate that the results using the optimization procedure can effectively reduce the reaction forces at mounts.
Technical Paper

Design and Structural Parameters Analysis of the Centrifugal Compressor for Automotive Fuel Cell System Based on CFD Method

2023-04-11
2023-01-0499
Electric centrifugal air compressor is one of the most important auxiliary components for the fuel cell engine, which has great impacts on the system efficiency, cost and compactness. However, the centrifugal compressor works at an ultra-high speed for a long time, which poses a great challenge to the lives of motor, bearing and seal. Therefore, reducing the rotating speed of the impeller and maintaining high pressure ratio and high efficiency are important issues for aerodynamic design of the compressor. In this paper, a centrifugal compressor rotor for a 100kW fuel cell system is designed. Aiming at reducing the rotating speed, the influences of three key structural parameters including inlet blade angle, outlet blade angle and blade outlet radius on performance are investigated. The aerodynamic performance of the compressor is predicted using the Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools.
Technical Paper

Design of Isolation Pulley in Front of Crankshaft to Reduce Vibrations of Front End Accessory Drive System

2015-06-15
2015-01-2254
The driving pulley is often used as a Torsional Vibration Damper (TVD) for the crankshaft in the front end accessory drive (FEAD) system. Although the crankshaft torsional vibrations are dampened, they are transmitted to the belt transmission and therefore to the driven accessories. The isolation pulley is a new device to reduce the belt tension fluctuation by isolating the belt transmission from the crankshaft torsional vibrations. A five-pulley system with isolation pulley is presented and a non-linear model is established to predict the dynamic response of the pulleys, tensioner motion, tension fluctuation and slippage. The model works in the time domain with Runge-Kutta time-stepping algorithm. The numerical simulation results of harmonic excitations show that the amplitudes of the belt tension fluctuation and the vibrations of each component are reduced significantly. Moreover, the effect of isolation pulley parameters on the system natural frequencies is demonstrated.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Effect of Magnetic Nanorefrigerant on Electric Vehicle

2017-10-08
2017-01-2222
The ever increasing popularity of electric vehicles and higher requirement on safety and comfort has led heat pump air conditioning system indispensable in electric vehicle. Many studies have shown that the addition of nano particles contributes to great improvement on thermal conductivity than that of conventional refrigerants. Therefore, the application of the magnetic nanorefrigerant in heat pump air conditioning system has massive potential to heighten the heat transfer efficiency. This paper aims at studying the magnetic nanorefrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a. According to the relevant theoretical analyses and empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately. In the heat pump air conditioning system of a certain type of electric vehicle, the special working condition parameters are selected to carry out calculation analysis with numerical analysis software.
Technical Paper

Fault Feature Extraction of Elliptically Shaped Bearing Raceway

2019-06-05
2019-01-1564
The elliptically shaped bearing (ESB) with a rigid, elliptical inner race and a flexible, thin-walled outer race is the most easily damaged core component of harmonic drive. The ESB rotates under cycle load of alternating stress due to its special elliptic structure. Hence, the fault features of ESB such as fatigue spalling and pitting are apt to be concealed by the excitation of impulses caused by alternating between major axis and minor axis. In order to diagnose the fault on raceway surfaces of ESB, a new method of CMWT-FH based on Continuous Morlet Wavelet Transform (CMWT) and FFT-based Hilbert (FH) spectrum analysis is proposed to extract the fault feature.
Journal Article

Finite Element Model Modification of the Mount Bracket Based on Modal Test

2022-03-29
2022-01-0301
The mount bracket is an important part of the mount system, and its dynamic characteristics will affect dynamic characteristics of the mount system, which means it will affect NVH(Noise, Vibration, Harshness) of the vehicle. Based on the large error between the test result and the finite element analysis(FEA) result, the dynamic finite element model of the mount bracket can be modified from the material parameters and the equivalent boundary of the bolt joint. In this paper, a method to identify the parameters of the mount bracket model by combining modal test, FEA, and the mathematical optimization model was presented. Firstly, based on HyperStudy platform, the optimization objective was minimizing the natural frequency error between FEA and free mode test, and the material parameters of the bracket to be identified were used as design variables to build the optimization function. The global response surface method was used for iteration to complete the identification.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Interior Sound Quality Refinement Base on Mechanism Study of Crankshaft Impact Noise

2019-04-02
2019-01-0772
A rumbling noise is audible in a vehicle passenger compartment during acceleration. Mechanism detail of the rumbling noise is studied. A series of preliminary transfer path experiments investigation on chassis dynamometer shows that the interior rumbling noise is mainly induced by abnormal crankshaft impact at particular crank angle. Spectrum analysis indicates that high level half order harmonic components significantly affects the rumbling noise. Multi-body dynamics model of the powertrain is developed to further investigate the root cause of the abnormal crankshaft impact. Experiment results are used to verify the numeric model. High deviation of main bearing forces at the crank angle 0° to 180° after the Fire Top Dead Center of the no.l cylinder is considered to fundamentally induces the high level half order components. The force ripple coupled with the crankshaft resonance induces the crankshaft rumbling.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Material Parameter Identification Method for Rubber Mount Constitutive Equation

2023-05-08
2023-01-1154
As an important vibration damping element in automobile industries, the vibration transmitted from the engine to the frame can be reduced effectively because of rubber mount. The influence of preload on the static characteristics of rubber mount and the constitutive parameters identification of Mooney-Rivlin model under preload were studied. Firstly, a test rig for stiffness measurement of rubber mount under preload was designed and the influence of preload on the force versus displacement of mount was studied. Then, the model for estimating force versus displacement of rubber mount was established. The response surface model for parameters identification was established. And the identification method for estimating parameters of Mooney-Rivlin model of rubber mount was proposed with the crow search algorithm. Taking the rubber mount as the research object and taking the parameters of Mooney-Rivlin model as the variables.
X