Refine Your Search

Topic

Author

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
Technical Paper

A Predictive Model for the Interior Pressure Oscillations from Flow Over Vehicle Openings

1997-05-20
971906
An analytical model based on “vortex sound” theory was investigated for predicting the frequency, the relative magnitude, the onset, and the offset of self-sustained interior pressure fluctuations inside a vehicle with an open sunroof. The “buffeting” phenomenon was found to be caused by the flow-excited resonance of the cavity. The model was applied to investigate the optimal sunroof length and width for a mid-size sedan. The input parameters are the cavity volume, the orifice dimensions, the flow velocity, and one coefficient characterizing vortex diffusion. The analytical predictions were compared with experimental results obtained for a system which geometry approximated the one-fifth scale model of a typical vehicle passenger compartment with a rectangular, open sunroof. Predicted and observed frequencies and relative interior pressure levels were in good agreement around the “critical” velocity, at which the cavity response is near resonance.
Technical Paper

Active Control of Wind Noise Using Robust Feedback Control

1997-05-20
971891
A feedback controller bas been developed using robust control techniques to control the sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain loop shaping techniques. System uncertainty, sound pressure level reductions, and actuator constraints are included in the design process. For the wind noise problem, weighting factors have been included to distinguish between the importance of modes that radiate sound and those that do not radiate. The wind noise controller has been implemented in the quiet wind tunnel facility at the Ray W. Herrick Laboratories at Purdue University. A multiple-input, multiple-output controller using accelerometer feedback and shaker control was able to achieve control up to 1000 Hz. Sound pressure level reductions of as much as 15 dB were achieved at the frequencies of the plates modes. Overall reductions over the 100-1000 Hz band were approximately 5 dB.
Technical Paper

Aerodynamic Drag Reduction of Intercity Buses

1980-11-01
801404
An experimental program was conducted to verify the reduction in fuel consumption achievable with aerodynamic improvements to intercity buses. Wind tunnel model tests were used to develop effective aerodynamic improvements and full-scale road tests to validate the results. Greyhound Lines coach models MC-7 and MC-8 were tested with head- and crosswinds. Aerodynamic drag of the MC-7 was reduced 17 percent at zero yaw. Drag of the MC-8 initially was higher; it was reduced 27 percent at zero yaw by the best fairing. Both low-drag configurations were less sensitive to crosswinds than the original models; significant drag reduction was maintained to 15 degrees yaw angle. Fuel consumption measurements made with aerodynamic fairings installed on an MC-7 showed that the low-drag bus used 11.7 percent less fuel at a steady 55 mph. The cost of the full-scale modifications was estimated at $ 1,500 each for a retrofit kit and no added cost to produce on new vehicles.
Technical Paper

An Investigation of the Dependence of NO and Soot Formation and Oxidation in Transient Combusting Jets on Injection and Chamber Conditions

2000-03-06
2000-01-0507
NO and soot emissions from Diesel engines are dependent on several parameters related to the engine design and operating conditions. Multidimensional models are increasingly employed to study the effect of these parameters. In this paper, a multidimensional model for flows, sprays and combustion in engines is employed to study the dependence of NO and soot formation and oxidation on injection timing, injection pressure, chamber temperature, EGR and ignition delay, and compare the computed trends with those observed in experimental studies reported in the literature. Computations are carried out in a typical heavy-duty Diesel engine and additional computations in a constant volume chamber are used to clarify the engine results when appropriate. For several parametric changes, the experimentally observed trends are reproduced. However, several limitations are identified. The structure of the computed combusting jet has differences with those suggested from recent experiments.
Technical Paper

Automotive Suspension Models Using Component Mobility Methodology

1993-05-01
931298
The mobility modeling technique is applied to the structure-borne noise path through a vehicle suspension. The model is developed using measured FRF data taken on the isolated components of the suspension and body structure of a midsize sedan. Several important modeling issues of suspensions are resolved. It was determined that multiple degrees of freedom are required to model the coupling at joints between the suspension and body structure. The investigation also demonstrated that bushings should not be included in the measurements used to develop these models and should be added later using simplified bushing parameters. The importance of transfer mobility information between the various suspension attachments was also investigated. The agreement between the mobility model predictions and the measured FRF data for the overall system is better than similar data published in the literature to date.
Technical Paper

Biomass Productivity and Sustainability of a Bioregenerative Life-Support System

1992-07-01
921359
Energy budgets for future Controlled Ecological Life-Support Systems (CELSS) must balance not only with respect to primary productivity (i.e., photosynthesis) vs. utilization steps (human maintenance plus preparative and recycling processes), but also with respect to necessary and desired nonlife-support activities of crews (e.g., exploration, research). Present objectives of the NSCORT program at Purdue University include identification of critical paths for biomass conversion to desired forms with energetics and rate-constant properties that are compatible with life-support sustainability within a CELSS. Physico-chemical recycling systems working in conjunction with bioregenerative ones likely will be required to keep time constants of critical processes within reasonable limits.
Journal Article

Car-in-the-Loop Complete Vehicle Test Rig

2015-04-14
2015-01-0647
During the last years mechatronic systems developed into one of the biggest drivers of innovation in the automotive industry. The start of production of systems like dual clutch transmission, lane departure warning systems and active suspensions proves this statement. These systems have an influence on the longitudinal, steering and vertical dynamics of the vehicle. That is why the interaction on vehicle level is crucial for an optimal result in the fields of efficiency, comfort, safety and dynamics. To optimize the interaction of mechatronic systems, in this paper a new test rig concept for a complete vehicle is presented. The so-called Car-in-the-Loop-concept is capable of realistically reproducing the loads, which act on the powertrain, the steering and the suspension during a test drive.
Journal Article

Comparison of Parameter-Identified Simulation Models with Different Detailing Level to Reproduce the Side Shaft Torque of an Automotive Powertrain with Automatic Transmission

2016-04-05
2016-01-1148
The underlying basic model represents a powertrain with automatic transmission including a torque converter. It is based on a greybox-modeling approach, which refers to ordinary differential equations with identified parameters and characteristic curves. The validated basic model is extended in order to reproduce the system behavior and especially the side shaft torque during a gear shift process. Therefore the model is extended by a transmission model with clutches for gear shifting in order to simulate specific powertrain dynamics additionally. The parameters have already been determined for the basic model using a method for isolated and structured parameter identification based on measurement data of an automotive powertrain test bench. A comparable structured parameter identification method is applied to obtain the parameters of the extended model.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Control of Interior Pressure Fluctuations Due to Flow Over Vehicle Openings

1999-05-17
1999-01-1813
Grazing flows over open windows or sunroofs may result in “flow buffeting,” i.e. self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the vehicle. The associated pressure fluctuations may cause passenger fatigue and discomfort. Many solutions have been proposed to solve this problem, including for example leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive” i.e. they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In this study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel.
Technical Paper

Controlling the Water Availability from a Ceramic Tube System Subjected to Non-Standard Gravities

1996-07-01
961505
The Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) offers means to control water availability to plants under non-standard gravities. It is hypothesized that control can be obtained by applying suction pressure within the ceramic tubes. The research objectives include verifying the presented control equation for the PCT-NDS under micro-(less than 1 g) and hyper- (greater than 1 g) gravities. Experiments were conducted on a KC-135 subjecting the system to near-zero to 2 g's and to sustained hyper-gravities upto 10 g's using a centrifuge. Results indicated that the water availability can be controlled through applied suction pressure.
Technical Paper

Correlation of Tire Intensity Levels and Passby Sound Pressure Levels

1995-05-01
951355
The object of the work reported here was to relate the acoustic intensity level measured near the contact patch of a driven tire on a passenger vehicle with the passby noise levels measured at a sideline microphone during coast and cruise conditions. Based on those measurements it was then possible to estimate the tire noise contribution to the passby level measured when the vehicle under test was accelerating. As part of this testing program, data was collected using five vehicles at fourteen passby sites in the United States: in excess of 800 data sets were obtained.
Technical Paper

Electric Power Train Configurations with Appropriate Transmission Systems

2011-04-12
2011-01-0942
Referring to the transmission development, three different classifications of the power train are useful. These are the conventional power train with combustion-engined drive of the wheels, the electric power train with electromotive drive of the wheels and the hybrid power train with both types of drive. Due to this division, the micro hybrid belongs to the conventional power train while the serial hybrid is classified with the electric power train. Subdivisions of the electric power train are the decentralized drives near the axle shafts or the wheel hub drive and the central drive with differential. The choice of the electric motor is dependent on different influences such as the package, the costs or the application area. Furthermore the execution of the transmission system does influence the electric motor. Wheel hub drives are usually executed on wheel speed level or with single ratio transmission.
Technical Paper

Environment-Adaptive Localization based on GNSS, Odometry and LiDAR Systems

2024-07-02
2024-01-2986
In the evolving landscape of automated driving systems, the critical role of vehicle localization within the autonomous driving stack is increasingly evident. Traditional reliance on Global Navigation Satellite Systems (GNSS) proves to be inadequate, especially in urban areas where signal obstruction and multipath effects degrade accuracy. Addressing this challenge, this paper details the enhancement of a localization system for autonomous public transport vehicles, focusing on mitigating GNSS errors through the integration of a LiDAR sensor. The approach involves creating a 3D map using the factor graph-based LIO-SAM algorithm based on GNSS, vehicle odometry, IMU and LiDAR data. The algorithm is adapted to the use-case by adding a velocity factor and altitude data from a Digital Terrain model. Based on the map a state estimator is proposed, which combines high-frequency LiDAR odometry based on FAST-LIO with low-frequency absolute multiscale ICP-based LiDAR position estimation.
Technical Paper

Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation

2013-04-08
2013-01-0156
It is a time and cost consuming way to physically develop Hybrid Electric Vehicle (HEV) supervisor controller due to the increasing complexity of powertrain system. This study aims to investigate the HEV supervisor controller development process using dSPACE midsize Hardware in the Loop simulation system (HIL) for HEV powertrain control. The prototyping controller was developed on basis of MircoAutoBox II, and an HIL test bench was built on midsize HIL machine for the purpose of verification. The feasibility and capability of HIL were attested by the prototyping control strategy and fault modes simulation. The proposed approach was demonstrated its effectiveness and applicability to HEV supervisor controller development.
Technical Paper

Impact of Aging and NOX/Soot Ratio on the Performance of a Catalyzed Particulate Filter for Heavy Duty Diesel Applications

2005-04-11
2005-01-0663
Particulate filters are currently the method of choice for reducing soot levels in diesel exhaust to the extremely low levels required for meeting future emission standards. For cost effective, reliable and manageable soot regeneration, the Catalytic Diesel Particulate Filter (CDPF) has proven to be one of the most promising solutions for maintaining filter performance. The activity of the CDPF can help lower soot ignition temperature thereby promoting active, oxygen-based filter regeneration. It can also facilitate passive regeneration of a filter at temperatures below 400 °C through formation of NO2 by catalyzing the oxidation of NO. There are two important factors which affect the passive regeneration of a CDPF. One is the influence of NOX/soot ratio. The other is the deterioration of the catalytic function upon aging. Together they determine the quantity of NO2 available for soot oxidation.
Technical Paper

Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles

2017-03-28
2017-01-0924
Recently, the European Union has adopted a new regulation on Real-Driving-Emissions (RDE) and also China is considering RDE implementation into new China 6 legislation. The new RDE regulation is focused on measuring nitrogen oxides (NOx) and particulate number (PN) emissions of both light-duty gasoline and diesel vehicles under real world conditions. A supplemental RDE test procedure was developed for European type approval, which includes on-road testing with cars equipped with portable emission measurement systems (PEMS). This new regulation will significantly affect the engine calibrations and the exhaust gas aftertreatment. In this study the impact of the new RDE regulation on two recent EU 6b certified turbocharged direct injected gasoline vehicles has been investigated. A comparison of several chassis dyno drive cycles with two new defined on-road RDE cycles was performed.
Technical Paper

Investigation of the Hybrid Operating Modes Regarding Efficiency, Emissions and Comfort for the Parallel-Series Hybrid Powertrain Concept DE-REX

2018-09-10
2018-01-1828
The “Two-Drive-Transmission with Range-Extender” (called DE-REX) is an innovative hybrid powertrain concept using two electric motors and an internal combustion engine. The two electric motors are permanent magnet synchronous motors with a maximum power of 48 kW each. As combustion engine a 3 cylinder, turbocharged engine with a power of 65 kW is used. The aggregates are coupled to a transmission whose layout is characterized by consisting of two parallel 2-speed sub-transmissions. This layout offers a high flexibility and enables both parallel and series hybrid driving. The hybrid control unit (HCU) has to select the optimal driving mode and power distribution between the aggregates in regard to in some extend competing objectives like efficiency, emissions or driving comfort. In particular, the operation of the internal combustion engine with only two gear ratios is challenging.
X