Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Advanced BEV Battery Pack Thermal Simulation Model Development & Co-relation with Physical Testing

2021-09-15
2021-28-0138
Battery Thermal management is a major challenge for occupant safety in an electric vehicle. Predicting the battery electrical losses and thermal behaviour is another challenge for the battery management system. Different virtual models are developed for cell level and pack level thermal evaluation. All these models have a varying degree of accuracy and limitation. The latest developed model is more accurate and can predict the battery cell & pack level temperatures. The battery can be modeled in different ways, ECM (Electrochemical model), EIS (Electrochemical Impedance Spectroscopy) [1]. Newman model is a well-known electrochemical model. [2]. EIS uses a combination of DC and small AC signal [3,4]. ECM model also used for estimating SOC and in BMS [5]. The cell temperature in the battery pack not only depends upon the cell inside physics but also depends upon cell outside cooling physics. Cell outside physics is simulated by 3D CFD software during the design process [6].
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

Common Automobile Program to Improve Mass Transportation

2016-04-05
2016-01-0154
This paper describes the Common Automobile Program (CAP) that can be implemented to improve mass transportation. CAP is the use of automated electric vehicles using smart navigation and control technologies to improve mass transportation. In CAP, common vehicles are used by different passengers, thus, reducing the on-road traffic and also the parking space required. Various low-cost stations are to be built along specified paths and the vehicle can be used at the convenience of the commuter. Currently, buses and trains require the passengers to wait at the station and a significant amount of time is spent at intermediate stops. The vehicle in CAP runs directly from origin to destination and also eliminates the waiting time at stations. Passengers do not wait for vehicles; instead vehicles wait for the passengers. The journey starts as the passenger enters the station and selects the destination.
Technical Paper

Design of Experiments Enabled CFD Approach for Optimizing Cooling Fan Performance

2014-04-01
2014-01-0658
Increasing demands on engine power to meet increased load carrying capacity and adherence to emission norms have necessitated the need to improve thermal management system of the vehicle. The efficiency of the vehicle cooling system strongly depends on the fan and fan-shroud design and, designing an optimum fan and fan-shroud has been a challenge for the designer. Computational Fluid Dynamics (CFD) techniques are being increasingly used to perform virtual tests to predict and optimize the performance of fan and fan-shroud assembly. However, these CFD based optimization are mostly based on a single performance parameter. In addition, the sequential choice of input parameters in such optimization exercise leads to a large number of CFD simulations that are required to optimize the performance over the complete range of design and operating envelope. As a result, the optimization is carried out over a limited range of design and operating envelope only.
Technical Paper

Development of a CAE Method for Predicting Solar Loading Impact for Electrical System Performance in an Automotive Cabin

2018-04-03
2018-01-0785
A number of market factors such as customer demand for improved connectivity and infotainment systems, automated driver assist systems and electrification of powertrain have driven an increase in the number of electrical systems within the cabin of automotive vehicles. These systems have limited operating temperature windows, therefore markets with high ambient temperatures and solar loading represent a significant challenge due to high cabin temperatures. Traditionally climatic facilities have been used replicate the conditions seen in these markets in order to understand the performance of the electrical systems. However such facilities have a number of limitations such as fixed solar arrays, secondary radiation from the walls and substantial operating costs limiting testing to envelope tests. Therefore the requirement for CAE based approach to more accurately represent the conditions seen in the real world is clear.
Technical Paper

FE Prediction of Thermal Performance and Stresses in a Disc Brake System

2006-10-31
2006-01-3558
The brake system is one of the most critical systems in the automotive vehicle. Its design is a challenging task since stringent performance and packaging requirements are to be fully met - optimizing the brake performance and weight of the brake system. The brake disc is an important component in the braking system which is expected to withstand and dissipate the heat generated during the braking event. Validation of brake disc design through CAE/FEA is presented in this paper. The procedure for prediction of thermal performance was developed in-house, tuned and verified by correlating with Test data available for existing-design and then applied to the new-design brake disc. The correlation achieved for the existing-design brake disc (both solid and ventilated), procedure for prediction of thermo-mechanical performance (heat transfer coefficient estimation, temperature distribution etc.) are also included.
Technical Paper

Sensitivity Analysis of Windshield Defrost Characteristics Impact on Occupant Thermal Comfort

2017-03-28
2017-01-0143
During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
Technical Paper

Thermal Performance Prediction of Jet Lubricated Transmission System using Computational Methods

2017-10-08
2017-01-2437
The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
Technical Paper

Ultra-Capacitor based Hybrid Energy Storage and Energy Management for Mild Hybrid Vehicles

2014-04-01
2014-01-1882
In a Mild hybrid electric vehicle, a battery serves as a continuous source of energy but is inefficient in supplying peak power demands required during torque assists for short duration. Moreover, the random charging and discharging that result due to varying drive cycle of the vehicle affects the life of the battery. In this paper, an Ultra-capacitor based hybrid energy storage system (HESS) has been developed for mild hybrid vehicle which aims at utilizing the advantages of ultracapacitors by combining them with lead-acid batteries, to improve the overall performance of the battery, and to increase their useful life. Active current-sharing is achieved by interfacing ultracapacitor to the battery through a bi-directional boost dc-dc converter.
X