Refine Your Search

Topic

Search Results

Technical Paper

An Advanced High Flow PCABS for Improving Injection Molding Processes and Cycles

2001-03-05
2001-01-0846
An advanced high flow PCABS was developed for improving the efficiency of injection molding processes and cycle times. Proprietary technology was used to develop this new blend while maintaining key properties (heat resistance and impact) necessary to meet end use part requirements. Significant rheological improvements in melt flow rate (MFR) and flow capabilities throughout the entire viscosity versus shear rate range were obtained. These improvements allowed for lower cooling times (21-27% reduction) and injection pressures. Molders using this resin have the potential to improve cycle times, improve processes, and save money. This paper will document cycle time and process improvements in automotive instrument panel applications with the new high flow PCABS blend, PULSE*2000EZ.
Technical Paper

An Examination of Blow Molding as an Alternative to Injection Molding for PC/ABS Automotive Interior Impact Components

2004-03-08
2004-01-0016
PC/ABS blends have been used with much success in energy management applications for the last 10 years. These systems are typically injection molded; however as blow molding technology advances, a re-examination of applicable applications is warranted. The attributes of the two molding techniques will be compared in a technical manner to illustrate which process delivers the most cost effective solution for automotive interior impact components. Material morphology and property consistency, energy management capability, weight savings, and total systems costs will be explored. Both fabrication techniques will be examined using FEA simulations to demonstrate energy management and weight savings. High magnification microscopy will depict part microstructure for both techniques, illustrating differences in morphology and rubber phase orientation in PULSE* Polycarbonate-Acrylonitrile-Butadiene-Styrene Blends (PC/ABS).
Technical Paper

Automotive Seating Foam: Subjective Dynamic Comfort Study

1999-03-01
1999-01-0588
Many studies have been done to objectively measure car seat foam properties and correlate them to comfort performance. Typically, the vibration characteristics (namely transmissibility) of the foam cushion are measured. It has been generally accepted that low natural frequency equates to better comfort. However, no subjective studies have been done to verify that humans can feel the vibration differences that are measured. Also, the measured differences of the foam may not be detectable once the foam is built into a complete seat. Three different foam formulations utilizing MDI (methylene diphenyl diisocyanate) and TDI (toluene diisocyanate) technology were evaluated for vibration characteristics. The foams were then submitted to subjective human testing and objective lab testing after being built into seats. The subjective testing was done using a typical ride and drive evaluation where people were interviewed about the comfort of the seat while driving over various road conditions.
Technical Paper

Characterisation of Talc-Filled Impact-Modified Polypropylene for Use in Engineering Analyses

1998-02-23
980986
The drive to reduce costs and increase efficiency in the automotive industry is often the driving force for development of new technologies and methods of engineering. Polypropylene (PP) is widely used as a low cost alternative to “engineering” thermoplastics. This paper outlines the characterisation methods used to develop material models for talc-filled impact-modified PP, which are then used to increase the efficiency of the development process, by using engineering analyses to reduce the prototyping costs and potentially the development time for an application. Instrument panels (IPs), door panels and trim parts are usually subjected to heat requirements and must maintain dimensional tolerance levels for each application. This necessitates extensive prototype testing and often several design iterations in order to reach the requirements. This paper deals with the characterisation of PP creep behaviour and development of a model for use in Finite-Element (FE) - based codes.
Technical Paper

Conceptual Development and Engineering Validation of a Hybrid Instrument Panel, Integrating the HVAC System

2001-03-05
2001-01-0842
The platform strategy broadly used by OEMs across their different brands, as well as the increasing targets in terms of cost, weight and performance are driving forward since several years the modular approach for a new generation of instrument panels. An innovative hybrid concept has been developed in order to integrate the HVAC system with the structural IP components, reducing cost and weight, improving thermal comfort and structural performance, with at the meantime high style flexibility. The integration of metallic and thermoplastic components, together with a structural use of plastic parts, has driven to the development of different modular concepts. Each of these concepts has been screened and optimized using engineering tools such as finite element analysis (FEA) and computational fluid dynamics (CFD) in order to assess the structural, noise-vibration-harshness (NVH), airflow and cool-down performance.
Technical Paper

Considerations in Material, Part, and Process Design for Downgauged RRIM Applications

2003-03-03
2003-01-0209
To address the automotive industry's initiative to maximize the utility of each component by decreasing both weight and cost to improve the performance and value of its products, it is logical to try to minimize the thickness of any part whose main function is ostensibly decorative. A example of such a candidate part on the vehicle would be the fascia and body side claddings. The fascia and claddings of vehicles do provide some impact resistance and resiliency functionality to vehicles, but more and more, the energy management functionality is being taken on by improvements in the engineering design and support systems behind the exterior part. The function of these exterior parts then, is, to a large degree, to be aesthetically pleasing when painted, and maintain their high quality fit and finish over the life of the vehicle. These applications are therefore justifiably subject to investigations into the reduction of their wallstock.
Technical Paper

Costs of Material Data Measurement

1999-03-01
1999-01-0278
The material data provided by resin suppliers in their product datasheets generally focuses on single point data only and does not include the data useful to the design engineers. Even though the single-point data bears little relevance to the end-use performance of the material and provides very little insight into its behavior, design engineers rely heavily on these data because it is readily available. However, to enhance their confidence in their material selection decisions, they ask for large quantity of data without taking into consideration the cost of data measurement. Today, as resin suppliers struggle to justify the cost of generating all the data requested against the tremendous pressure to reduce their cost, it is important to put the direct costs of material data measurement in perspective.
Technical Paper

Effects of Fuel Exposure on Physical Properties of Selected Plastics

1990-02-01
900632
This paper will present data that is the result of testing several rigid plastics by exposure to several automotive fuels. The fuels were selected from a list of fuels that have been suggested by several customers in the automotive industries. They are representative of fuels in service today and fuels that are expected to be used in the future. The plastics were selected because they are candidates for use in the rigid components of fuel handling systems. These plastics might be used in fuel filter housings, quick connectors, fuel rails or throttle bodies. The data are presented to provide design engineers with some of the information necessary for the design of rigid plastic components for fuel handling systems.
Technical Paper

Engine Friction and Wear Performances with Polyalkylene Glycol Engine Oils

2016-10-17
2016-01-2271
The application of polyalkylene glycol (PAG) as a base stock for engine oil formulation has been explored for substantial fuel economy gain over traditional formulations with mineral oils. Various PAG chemistries were explored depending on feed stock material used for manufacturing. All formulations except one have the same additive package. The friction performance of these oils was evaluated in a motored single cylinder engine with current production engine hardware in the temperature range 40°C-120°C and in the speed range of 500 RPM-2500 RPM. PAG formulations showed up to 50% friction reduction over GF-5 SAE 5W-20 oil depending on temperature, speed, and oil chemistry. Friction evaluation in a motored I-4 engine showed up to 11% friction reduction in the temperature range 40°C-100°C over GF-5 oil. The paper will share results on ASTM Sequence VID fuel economy, Sequence IVA wear, and Sequence VG sludge and varnish tests. Chassis roll fuel economy data will also be shared.
Technical Paper

Engineering Development of a Fully-Integrated Polypropylene Instrument Panel Concept

2001-03-05
2001-01-0841
In the present paper the engineering development of a structural instrument panel (IP) concept made of a Polypropylene (PP) rubber modified compound filled with 15% talc in which the metal cross car beam has been eliminated, is discussed. The design concept consists of three main injection molded shells which are vibration welded to each other to form a stiff structure. The steering column is attached to the BIW and plastic structure by means of a separate column support made of steel, aluminum, magnesium or fiber-reinforced plastic. The concept has been developed for the European market and is therefore not intended to meet the unbelted FMVSS 208 requirements. The total IP assembly has a substantially lower cost and weight than conventional cross car beam based IP structures while meeting all of the performance requirements. The concept development was supported by static and dynamic numerical analyses using well established, widely used FEA codes.
Technical Paper

Engineering the 1999 Mercury Cougar Hybrid Instrument Panel

1999-03-01
1999-01-0692
In a joint effort between Ford Motor Company, Visteon Automotive Systems, Textron Automotive Company, and Dow Automotive the 1999 Mercury Cougar instrument panel (IP) was designed and engineered to reduce the weight and overall cost of the IP system. The original IP architecture changed from a traditional design that relied heavily upon the steel structure to absorb and dissipate unbelted occupant energy during frontal collisions to a hybrid design that utilizes both plastic and steel to manage energy. This design approach further reduced IP system weight by 1.88 Kg and yielded significant system cost savings. The hybrid instrument panel architecture in the Cougar utilizes a steel cross car beam coupled to steel energy absorbing brackets and a ductile thermoplastic substrate. The glove box assembly and the driver knee bolster are double shell injection molded structures that incorporate molded-in ribs for added stiffness.
Technical Paper

Evolution of Instrument Panels Made of Polypropylene

1998-02-23
980067
Among the various materials used today for an instrument panel application, polypropylene is one of the least expensive per kilogram and therefore one of the most attractive. Typically, different polypropylene compounds may be used in different components of the IP according to the desired performance requirements. At the same time, polypropylene is one of the most difficult thermoplastics to use properly when designing an instrument panel due to weaknesses related to its semi-crystalline nature. For some vehicles, the metal reinforcement which would be needed to overcome these weaknesses would lead to a higher overall system cost compared with engineering thermoplastics. In the last decade significant progress has been made in the development of new polypropylene compounds and processes.
Technical Paper

Evolution of Plastics IP Technology Technical Feasibility of Integrated Modular IP System

1998-02-23
980435
Fully-integrated structural instrument panels (IP) have been in commercial use in passenger cars, light trucks, and sport utility vehicles for some years now. They offer a cost-effective alternative to the more traditional IP construction that utilizes full-size cross car beams to achieve the structural stiffness and energy management required to meet Federal Motor Vehicle Safety Standard (FMVSS) 208 and corporate performance requirements. The natural evolution of interior designs demands an increasing level of integration of the different components in the interior of the vehicle. Therefore, the natural extension of current structural IP technology is to integrate the steering column subassembly, i.e., steering column and column support, and the heat, ventilation, and air conditioning (HVAC) unit into a modular pre-assembled system.
Technical Paper

High Efficiency Energy Absorption Olefinic Foam

1999-03-01
1999-01-0296
The passing of the federal regulation for head impact protection for upper interior components (FMVSS 201U) has led to the use of a variety of foam materials in interior trim pillar and headliner reinforcement applications. Polyurethane foams and expanded bead foams are some of the commonly used foams in these applications. However, the low energy absorption efficiency (35% - 55%) of the current foams requires the use of 20 mm - 40 mm of packaging space to integrate the countermeasures that make it possible to meet the regulations. A newly developed high efficiency olefin based foam is able to meet the performance requirements at a reduced packaging space. A combination of physical structure and superior mechanical properties provides the much needed higher efficiency (80% - 90%) of the olefinic foam. This paper discusses the foam architecture and performance benefits for many interior applications, such as energy absorbing countermeasures in pillar trim, headliners, and door panels.
Technical Paper

Infrared Post-Cure of RIM Body Panels: A Significant Cost Savings

1998-02-23
980988
A new RRIM system produces a polyurea polymer that is capable of going through a traditional assembly process including E-coat bakes of up to 200C. In order to achieve the necessary performance characteristics, the high temperature resistant polyurea RIM polymer requires post-cure temperatures between 180C and 200C. Existing ovens are designed to post-cure materials below 160C. Also, existing ovens may not be large enough to handle pickup truck rear fenders. The existing ovens need to be refurbished or new ones built to meet the new market demand. To reduce the cost of the post-cure process, infrared (IR) radiation was tested to determine its utility for post-curing RIM parts. It was demonstrated that a infrared radiation can be used to pre-heat the RIM part in 1/10th the time of a convection oven in the laboratory. The benefit of using infrared radiation is improved dimensional stability and impact properties with acceptable flexural modulus.
Technical Paper

Mass ABS Development For High Quality Thin-Walled Interior Door Panels For The 1998 VW GOLF

1999-03-01
1999-01-0853
The trend in the automotive industry to establish higher quality, comfort and safety levels, while at the same time reducing cost and weight, is pushing production techniques, materials and the development cycle to become as efficient as possible. The automotive supplier has to choose from a broad range of fabrication technologies and material alternatives to achieve the highest performance level at the lowest possible cost. This paper outlines the process followed by a multi-functional team to design and develop the interior door panels for the VW Golf, in ABS resin for large scale production. The team effort, headed by the Tier 1 (Sommer Allibert Industrie), with extensive interaction with the OEM, and the support of the material supplier and tool-maker, led to a thin-walled part with integrated mountings, high quality appearance and excellent dimensional stability.
Technical Paper

New Low Cost High Performance Materials for Automotive Connectors and Light Sockets

2002-03-04
2002-01-1322
The QUESTRA* Crystalline Polymer product family, based on syndiotactic polystyrene (SPS), has been improved to meet the needs of the automotive connector and light socket applications in a very cost effective manner. In this paper, the attributes of two new SPS formulations, SPS/polyamide (PA) blends and low gas SPS formulations, are compared to existing SPS formulations and competitive resins. It is shown that the SPS/PA blends have significantly improved strength and ductility over existing SPS formulations. This improves the SPS formulation technology to include the full range of strength and ductility options the designer of automotive connectors needs to achieve the terminal retention forces and latch deflection distances necessary for the smaller connectors like the .64 mm terminal systems that the automotive industry is migrating towards.
Technical Paper

Properties and Performance of Diesel Particulate Filters of an Advanced Ceramic Material

2004-03-08
2004-01-0955
A new advanced ceramic material (ACM) has been developed and examined for diesel emission control systems, especially for diesel particulate filter (DPF) applications. Lab tests have shown that ACM possesses suitable mechanical and chemical properties for a durable DPF. Engine dynamometer tests have shown that a DPF made from ACM possesses high performance in the key application requirements of high filtration efficiency, low filtration back pressure, fast regeneration, and suitability for catalyst coating applications. The experimental results from this investigation demonstrate that a DPF made from ACM can be used for advanced diesel PM emission control systems, including potential four-way diesel catalytic converter systems.
Technical Paper

Remote Injection Molding Trial Support Using Wireless Video Camera Technology and Traditional Videoconferencing Capabilities

2002-03-04
2002-01-0724
The challenging economic climate of today is causing many suppliers to develop new and creative ways to improve efficiency and meet the needs of customers without jeopardizing the quality of service and support. The Dow Automotive business group is evaluating a new mechanism for remotely supporting customers' injection molding trials by combining wireless video camera technology and traditional videoconference (VC) capabilities. The Video Response System™ (VRS), from Teleco Video Systems, incorporates a wireless remote camera on a wheeled tripod and a wireless audio connection to allow users to transmit a real-time video and audio signal from anywhere within a location to other sites around the globe. The video and audio signals generated by the VRS system are transmitted to a traditional VC unit in the molding shop which in turn transmits the signals over ISDN lines to an awaiting VC unit.
X