Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Study of Stratified Charge Combustion Characteristics in New Concept Direct Injection SI Gasoline Engine

2001-03-05
2001-01-0734
A new stratified charge system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle and a shell-shaped piston cavity. This system, basically classified into the wall-guided mixture preparation concept that leads air/fuel mixture to the spark plug periphery by means of spray penetration and piston cavity configuration without an extra intake air flow controlling system, obtained wide engine operating area with stratified combustion and high output performance. This report presents the characteristics of stratified mixture formation and combustion, especially the important factor for achieving stable stratified combustion in the high-speed region, which have been clarified through analytical studies.
Technical Paper

An Experimental Study on Fuel Behavior During the Cold Start Period of a Direct Injection Spark Ignition Engine

2001-03-05
2001-01-0969
An experimental study was carried out in order to reduce engine-out HC emissions from a direct injection spark ignition (DISI) engine during the cold start period. The objectives of this study were to investigate the fuel behavior quantified with an analytic method and to propose some practical techniques to reduce the cylinder-wetting fuel volume and engine-out HC emissions. Compared to the MPI (Multi Port Fuel Injection) engine, required fuel volume for DISI engine was reduced during the cold start because intake port wall-wetting was not generated. On the other hand, a large volume of cylinder wetting fuel resulted in engine-out HC emissions. Injection timing, atomization and vaporization of injected fuel affected the cylinder-wetting fuel volume. Above all, Injection of the heated fuel provided good results. In summary, engine-out HC emissions from DISI engine was reduced compared to that of MPI engine during the cold-start period.
Journal Article

An Intake Valve Deposit (IVD) Engine Test Development to Investigate Deposit Build-Up Mechanism Using a Real Engine

2017-10-08
2017-01-2291
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
Technical Paper

Analysis of Fuel Flow and Spray Atomization in Slit Nozzle for Direct Injection SI Gasoline Engines

2006-04-03
2006-01-1000
The slit nozzle in the fuel injection valve for a direct injection spark ignition gasoline engine forms a thin, fan-shaped spray. The fan-shaped spray is characterized by high dispersion, comparatively high penetration, and fine atomization. This enables it to form a stable air-fuel mixture. However, further improvement of engine performance requires that the spray characteristics (particularly the level of atomization) be improved. Since the spray characteristics are strongly influenced by the fuel flow within the nozzle, it was clarified this effect by visual analyses of the fuel flow inside the nozzle using enlarged acrylic slit nozzles. The results demonstrated that vortices that are formed within the nozzle sac are continuously propagated in a periodic manner within the sac and that they influence the streamline of fuel flow from the sac to the slit.
Technical Paper

Analysis of the Fuel Liquid Film Thickness of a Port Fuel Injection Engine

2006-04-03
2006-01-1051
In this paper, the authors have developed a new measuring method of the liquid fuel film thickness on walls, such as intake ports, the combustion chamber and cylinder liner of a Port Fuel Injection (PFI) engine, and clarified the fuel film behavior under various running conditions when Fiber-based Laser-Induced Fluorescence (Fiber-based LIF) was applied to the newly developed method. The thickness of the fuel film is measured by detecting the intensity of fluorescence from the film that is irradiated by a He-Cd laser. A single optical fiber is used to simultaneously transmit the laser beam and the fluorescence from the film. In addition, the S/N ratio of the fluorescence is improved by using a He-Cd laser of which the wavelength (λ=442nm) is able to efficiently irradiate test fuel doped 2-3-butandione. Using this method, the fuel film thickness on the wall of the PFI engine was analyzed in two case studies.
Technical Paper

Application of a New Combustion Concept to Direct Injection Gasoline Engine

2000-03-06
2000-01-0531
A direct injection (DI) gasoline engine having a new stratified charge combustion system has been developed. This new combustion process (NCP) was achieved by a fan-shaped fuel spray and a combustion chamber with a shell-shaped cavity in the piston. Compared with the current Toyota D-4 engine, wider engine operating area with stratified combustion and higher output performance were obtained without a swirl control valve (SCV) and a helical port. This report presents the results of combustion analyses to optimize fuel spray characteristics and piston cavity shapes. Two factors were found to be important for achieving stable stratified combustion. The first is to create a ball-shaped uniform mixture cloud in the vicinity of the spark plug. The optimum ball-shaped mixture cloud is produced with a fuel spray having early breakup characteristics and uniform distribution, and a suitable side wall shape in the piston cavity to avoid the dispersion of the mixture.
Technical Paper

Cause of Exhaust Smoke and Its Reduction Methods in an HSDI Diesel Engine Under High-Speed and High-Load Conditions

2002-03-04
2002-01-1160
The cause of the exhaust smoke and its reduction methods in a small DI Diesel engine with a small-orifice-diameter nozzle and common rail F.I.E. were investigated under high-speed and high-load condition, using both in-cylinder observations and Three-dimensional numerical analyses. The following points were clarified during this study. At these conditions, fuel sprays are easily pushed away by a strong swirl, and immediately flow out to the squish area by a strong reverse squish. Therefore, the air in the cavity is not effectively used. Suppressing the airflow in a piston cavity, using such ideas as enlarging the piston cavity diameter or reducing the port swirl ratio, decreases the excessive outflow of the fuel-air mixture into the squish area, and allows the full use of air in the whole cavity. Hence, exhaust smoke is reduced.
Technical Paper

Combustion Improvement of CNG Engines by Hydrogen Addition

2011-08-30
2011-01-1996
This research aimed to identify how combustion characteristics are affected by the addition of hydrogen to methane, which is the main components of natural gas, and to study a combustion method that takes advantage of the properties of the blended fuel. It was found that adding hydrogen did not achieve a thermal efficiency improvement effect under stoichiometric conditions because cooling loss increased. The same result was obtained under EGR stoichiometric conditions. In contrast, under lean burn conditions, higher thermal efficiency and lower NOx than with methane combustion was achieved by utilizing the wide flammability range of hydrogen to expand the lean limit. Although NOx can be decreased easily by the addition of large quantities of hydrogen, the substantially lower energy density of the fuel causes a substantial reduction in cruising range. Consequently, this research improved the combustion of a CNG engine by increasing the tumble ratio to 1.8.
Technical Paper

Combustion Noise Analysis of Premixed Diesel Engine by Engine Tests and Simulations

2014-04-01
2014-01-1293
When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise.
Technical Paper

Development of Methanol Lean Burn System

1986-03-01
860247
A methanol fueled, lean burn system has been developed to improve both specific fuel consumption and NOx emissions. A 1.6L four-cylinder engine with increased compression ratio has been used to develop this system. Three major components of the Toyota Lean Combustion System (T-LCS) have been applied: (1) A helical port with a swirl control valve (2) A lean mixture sensor (3) Timed, multi-point fuel injection. A 2250 lb. Inertia Weight test vehicle has been fitted with this engine, and fuel system materials have been modified. This methanol, lean burn system has improved the fuel economy by about 12% still satisfying the 1986 emission standards of the U.S.A. and Japan. Aldehyde emissions have also been evaluated.
Technical Paper

Development of New Control Methods to Improve Response of Throttle Type Traction Control System

1992-02-01
920608
A description is made of new control methods to improve response of wheel slip regulation. These methods enabled a new Traction Control (TRC) system based on throttle control rather than brake pressure to be developed. Major points are as follows: (1) Use of fuel injection cut-off to minimize delay (2) Additional adaptive throttle control logic By these means, a response nearly equal to that with brake pressure control is achieved at lower cost and with a considerable weight saving. Furthermore, the system, by suppressing noise and vibration, enhances the driver's control ability.
Technical Paper

Effects of Helical Port with Swirl Control Valve on the Combustion and Performance of S. I. Engine

1985-02-01
850046
A helical port with a swirl control valve (SCV) has been developed to satisfy two inconsistent requirements of achieving sufficient swirl generation to improve the combustion and still maintaining high volumetric efficiency. Their effects on combustion were confirmed in a single cylinder engine using high speed flame photography and cylinder pressure diagram analysis which has demonstrated faster combustion. As a result of a hot wire anemometer study, the differences in gas motion were clarified between two helical ports, one with and one without a SCV. A more active movement of the center of swirl was measured in the case of helical port with SCV which suggests the generation of higher turbulence in the cylinder.
Technical Paper

Effects of Methanol/Gasoline Blends on Hot Weather Driveability

1987-02-01
870368
The effects of methanol/cosolvent/gasoline blends on hot weather driveability are surveyed. Results show that startability after engine-off soak drastically deteriorates in an EFI vehicle. By observing the behavior of the fuel in the delivery pipe during hot-start testing and the injected fuel spray shape at high fuel temperature, the authors confirmed that the main cause of this malfunction was the vapor lock in the injector nozzle. The relationship between hot weather driveability and fuel properties is discussed. The gasoline volatility expression commonly used to indicate deterioration in hot weather driveability was found to underestimate the increase in volatility of blended fuels at higher temperatures. A suggestion is made for a modification to the expression to include the effects of methanol blending on volatility characteristics at high temperatures so that EFI vehicle hot-startability may be predicted.
Technical Paper

Fuel Effects on Particulate Emissions from D. I. Engine - Chemical Analysis and Characterization of Diesel Fuel

1995-10-01
952351
The properties of diesel fuels were investigated in terms of particulate emissions to clarify the specification of such a diesel fuel for minimizing particulate emissions. Diesel fuels were analyzed using thin layer chromatography (TLC), and gas chromatography/mass spectrometry (GC/MS). These analysis revealed the entire composition of hydrocarbons in diesel fuels according to molecular formula. The entire composition of hydrocarbons in diesel fuels could be expressd on a three-dimensional graph: the X-axis as carbon number, the Y-axis as H/C ratio and the Z-axis as the amount of hydrocarbons of identical molecular formula. By using the graph, the properties reported so far were investigated. Also, simplified images of the fuel sprayed into a cylinder and its flame were derived from the observational results previously reported.
Technical Paper

Fuel Spray Simulation of Slit Nozzle Injector for Direct-Injection Gasoline Engine

2002-03-04
2002-01-1135
In direct-injection (DI) gasoline engines, spray characteristics greatly affect engine combustion. For the rapid development of new gasoline direct-injectors, it is necessary to predict the spray characteristics accurately by numerical analysis based on the injector nozzle geometry. In this study, two-phase flow inside slit nozzle injectors is calculated using the volume of fluid method in a three-dimensional CFD. The calculation results are directly applied to the boundary conditions of spray calculations, of which the submodels are recently developed to predict spray formation process in direct injection gasoline engines. The calculation results are compared with the experiments. Good agreements are obtained for typical spray characteristics such as spray shape, penetration and Sauter mean diameter at both low and high ambient pressures. Two slit nozzle injectors of which the slit thickness is different are compared.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Key Factors of Fuel Injection System to Draw Out Good Response in 4-Valve Engine

1987-02-01
870126
Fuel and air behavior in the induction passage of a 4-valve engine were investigated in order to improve response at low and medium engine speeds. It was found that response is affected not only by wall vetting but also by fuel being pushed back into the intake manifold and by a lack of fuel which occurs during the transient. Futhermore, fuel-air mixing was found to be insufficient at certain injection timings, resulting in poor combustion and a consequent increase in exhaust emission and fuel consumption. This paper describes the factors of the fuel injection system which are critical for optimum response. Recommendations are made for injector location and injection timing and a proposal is put forward for a system of compensatory fuel injection to improve combustion efficiency during acceleration.
X