Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

3D Automotive Millimeter-Wave Radar with Two-Dimensional Electronic Scanning

2017-03-28
2017-01-0047
The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

77 GHz Radar Based Multi-Target Tracking Algorithm on Expressway Condition

2022-12-16
2022-01-7129
Multi-Target tracking is a central aspect of modeling the surrounding environment of autonomous vehicles. Automotive millimeter-wave radar is a necessary component in the autonomous driving system. One of the biggest advantages of radar is it measures the velocity directly. Another big advantage is that the radar is less influenced by environmental conditions. It can work day and night, in rainy or snowy conditions. In the expressway scenario, the forward-looking radar can generate multiple objects, to properly track the leading vehicle or neighbor-lane vehicle, a multi-target tracking algorithm is required. How to associate the track and the measurement or data association is an important question in a multi-target tracking system. This paper applies the nearest-neighbor method to solve the data association problem and uses an extended Kalman filter to update the state of the track.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

A Comparative Study of Different Wheel Rotating Simulation Methods in Automotive Aerodynamics

2018-04-03
2018-01-0728
Wheel Aerodynamics is an important part of vehicle aerodynamics. The wheels can notably influence the total aerodynamic drag, lift and ventilation drag of vehicles. In order to simulate the real on-road condition of driving cars, the moving ground and wheel rotation is of major importance in CFD. However, the wheel rotation condition is difficult to be represented exactly, so this is still a critical topic which needs to be worked on. In this paper, a study, which focuses on two types of cars: a fastback sedan and a notchback DrivAer, is conducted. Comparing three different wheel rotating simulation methods: steady Moving wall, MRF and unsteady Sliding Mesh, the effects of different methods for the numerical simulation of vehicle aerodynamics are revealed. Discrepancies of aerodynamic forces between the methods are discussed as well as the flow field, and the simulation results are also compared with published experimental data for validation.
Technical Paper

A Comparative Study of Fuel Cell Prediction Models Based on Relevance Vector Machines with Different Kernel Functions

2021-04-06
2021-01-0728
Fuel cell reactors, as the core components of fuel cell vehicles, have a short life problem that has always limited the development of fuel cell vehicles. The life attenuation curve of fuel cell shows nonlinear characteristics, and there is no model that can accurately predict its effect. This paper is based on the experimental data of the vehicle fuel cell reactor, which is derived from the 600 h durability test run by a 4 kW fuel cell reactor. The relevance vector machine, as a Bayes processing method that supports vector machine, is a data-driven method based on kernel functions. The regression model is established by the relevance vector machine, and the super-parameters are found by genetic algorithm, because the kernel function strongly affects the nonlinearity of the curve, and the decay curve of fuel cell reactor performance is predicted according to four different kernel functions.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

A Control Strategy Based on Exact Linearization for Electromagnetic Valve Actuation

2007-04-16
2007-01-1596
Electromagnetic Valve Actuation (EVA) is considered to be a potential substitute of conventional valvetrains for automotive engines. However, valve quiet-seating (soft-landing) is difficult to be achieved. The EVA system and hence its’ mathematic model is nonlinear. Therefore, when linear control is used for EVA, firstly, the model has to be linearized at an equilibrium point through Taylor expansion. Consequently, the linearized model and control are valid only for a small range around the equilibrium point. This paper presents a control strategy for the whole transition of EVA, which combines exact linearization with Linear Quadratic Regulator (LQR). Firstly, the nonlinear EVA model is transformed to be linear in a new coordinate by using exact linearization, so the nonlinear model is not involved. Then the exact-linearized model is used for the EVA control with LQR.
Journal Article

A Data Driven Fuel Cell Life-Prediction Model for a Fuel Cell Electric City Bus

2021-04-06
2021-01-0739
Life prediction is a major focus for a commercial fuel cell stack, especially applied in fuel cell electric vehicles (FCEV). This paper proposes a data driven fuel cell lifetime prediction model using particle swarm optimized back-propagation neural network (PSO-BPNN). For the prediction model PSO-BP, PSO algorithm is used to determine the optimal hyper parameters of BP neural network. In this paper, total voltage of fuel cell stack is employed to represent the health index of fuel cell. Then the proposed prediction model is validated by the aging data from PEMFC stack in FCEV at the actual road condition. The experimental results indicate that PSO-BP model can predict the voltage degradation of PEMFC stack at actual road condition precisely and has a higher prediction accuracy than BP model.
Technical Paper

A Development And Test Environment for Automotive LIN Network

2008-06-23
2008-01-1519
“LIN-BOX” is designed as a development tool for simulation, implementation and test of the automotive LIN (Local Interconnect Network) control devices or entire network. The tool can be used to simulate master and/or slaves around LIN system. The configurable signal processing makes it possible to simulate and test the communication behavior. LIN-BOX monitors the bus traffic in the vehicle. The data on LIN bus can not only be shown on various windows but also written into log files. LIN-BOX has been used by several cases for debugging and validation, the result shows that it is a powerful tool for LIN cluster design, simulation and test.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper

A Hardware-in-the-Loop Simulator for Vehicle Adaptive Cruise Control Systems by Using xPC Target

2007-08-05
2007-01-3596
A HIL simulator for developing vehicle adaptive cruise control systems is presented in this paper. The xPC target is used to establish real-time simulation environment. The simulator is composed of a virtual vehicle model, real components of an ACC system like ECU, electronic throttle and braking modulator, a user interface to facilitate simulation, and brake and accelerator pedals to make interactive driver inputs easier. The vehicle model is validated against data from field test. Tests of an ACC controller in the real-time are conducted on the simulator.
Journal Article

A Lattice Boltzmann Simulation of Gas Purge in Flow Channel with Real GDL Surface Characteristics for Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0389
Gas purge is considered as an essential shutdown process for a PEMFC (Proton Exchange Membrane Fuel Cell), especially in subfreezing temperature. The water flooding phenomenon inside fuel cell flow channel have a marked impact on performance in normal operating condition. In addition, the residual water freezes in the subzero temperature, thus blocking the mass transfer from flow channel to porous media. Therefore, the gas purge course is of primary importance for improvement of performance and durability. The water droplet residing in the flow channel can be purged out due to shearing force of gas. In fact, the flow channel is not completely flat due to surface roughness of gas diffusion layer (GDL), meaning the water droplet may climb over obstacles. Moreover, the water droplet may block the flow channel and then be sheared into films on the surface of GDL.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
X