Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base

2007-10-29
2007-01-4000
In the early years of antifreeze/coolants (1920s & 30s) glycerin saw some usage, but because of higher cost and weaker freeze point depression, it was not competitive with ethylene glycol. Glycerin is a by-product of the manufacture of biodiesel (fatty acid methyl esters) made by reacting natural vegetable or animal fats with methanol. Biodiesel fuel is becoming increasingly important and is expected to gain a large market share in the next several years. Regular diesel fuels blended with 2%, 5%, and 20% biodiesel are now commercially available. The large amount of glycerin generated from high volume usage of biodiesel fuel has resulted in this chemical becoming cost competitive with the glycols currently used in engine coolants. For this reason, and lower toxicity comparable to that of propylene glycol, glycerin deserves to be reconsidered as a base for antifreeze/coolant.
Technical Paper

Numerical Model of Effect of Coolant Physical Properties on the Diesel Engine Liner Cavitation

2012-09-10
2012-01-1682
Cavitation, the study of formation, growth, and collapse of vapor cavities in the coolant jacket adjacent to diesel engine cylinder liners is an area of concern for diesel engine builders and users. Prior experimental work provides insight into parameters such as temperature and pressure. A commonly used bench test has been found not to correlate well with field testing. Also, field testing is very time consuming and costly. The 250 hour engine dynamometer coolant test in the industry costs over $60,000. Therefore, use of mathematical models for sorting out coolants is used, to study effects of coolant properties such as viscosity and surface tension on liner cavitation. Jet velocity at the time of implosion of the bubble is considered as a mechanism to quantify cavitation damage potential near a rigid wall. A model calculating jet velocity at the time of bubble collapse near a finite plate is determined using a commercial boundary element code, 2DynaFS.
X