Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Experimental Investigation on Low Temperature CDPF Regeneration Utilizing Hydrogen

2013-03-25
2013-01-0052
Soot particles accumulated in a DPF should be removed after a certain service time due to high pressure drop. The most common method is oxygen active regeneration which sometimes DPF cracking or melting. In this study, the authors aim to investigate the low temperature regeneration with hydrogen, which could prolong the DPF lifespan and facilitate CDPF regeneration efficiency. The DPF used in this research was coated with Pt/Al₂O₃ 25 g/ft₃ and all experiments were performed on engine test bench. Results showed that DPF regeneration can be realized at about 150°C or even lower. During regeneration, the inside temperature at front part (about 20 mm) of DPF was about 40°C higher than the other parts during regeneration. The maximum inside temperatures during regeneration depend only on the hydrogen concentration and soot oxidation can be calculated simply from the Arrhenius equation using the experimental temperatures.
Technical Paper

Comparison of Soot Oxidation by NO2 Only and Plasma-Treated Gas Containing NO2, O2, and Hydrocarbons

2002-10-21
2002-01-2704
NO2 is an effective soot oxidizer operating at lower temperatures than O2. The effect of pure NO2 on soot oxidation was evaluated and compared with the gas treated by plasma, which initially consisted of NO, O2, and hydrocarbons. The cutout of a commercial DPF was used and the pressure difference across the DPF was monitored for an hour. The concentration of NO/NO2, CO, CO2 at the outlet of the DPF was measured as a function of time. CO and CO2 concentration was measured periodically by gas chromatography. The experiment was performed at 230, 250, 300, 350°C. When NO2 only was used as an oxidizing agent, there was a close relationship between the decrease of the pressure difference across the DPF, the CO and CO2 concentration at the outlet of the DPF, and the back conversion of NO2 to NO.
Technical Paper

Measurement of Soot Mass and Pressure Drop Using a Single Channel DPF to Determine Soot Permeability and Density in the Wall Flow Filter

2007-04-16
2007-01-0311
The Diesel Particulate Filter (DPF) modeling has been used to predict the pressure drop, deposited soot mass and regeneration of DPF. But the prediction of DPF behavior requires the experimental data in which the most important parameter is hydrodynamic resistance factor. In this research, it was obtained as a function of particle's approach velocity. Also, the relations between the pressure drop and deposited soot mass were obtained experimentally. In order to investigate the characteristics of soot loading and oxidation behavior within DPF, a partial flow system was designed which can be used to measure important parameters at the same temperature and flow rate with those of the single channel DPF.
X