Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Biodynamic Model for the Assessment of Human Operator Performance under Vibration Environment

2005-06-14
2005-01-2742
A combined biodynamic and vehicle model is used to assess the vibration and performance of a human operator performing driving and other tasks. The other tasks include reaching, pointing and tracking by the driver and/or passenger. This analysis requires the coordinated use of separate and mature software programs for anthropometrics, vehicle dynamics, biodynamics, and systems analysis. The total package is called AVB-DYN, an acronym for Anthropometrics, Vehicle and Bio-DYNamics. The biodynamic component of AVB-DYN is described, and then compared with an experiment that studied human operator in-vehicle reaching performance using the U.S. Army TACOM Ride Motion Simulator.
Technical Paper

Combined Terrain, Vehicle, and Digital Human Models Used for Human Operator Performance Analysis

2004-06-15
2004-01-2152
A combined biodynamic and vehicle model is used to assess the vibration and performance of a human operator performing driving and other tasks. The other tasks include reaching, pointing and tracking by the driver and/or passenger. This analysis requires the coordinated use of separate and mature software programs for anthropometrics, vehicle dynamics, biodynamics, and systems analysis. The total package is called AVB-DYN, an acronym for Anthropometrics, Vehicle, and Bio-DYNamics. The objectives and architecture are discussed, and then a preliminary version of this package is demonstrated in an example where a HMMWV (High Mobility Multipurpose Wheeled Vehicle) operator is performing a driving task.
Technical Paper

Driver/Vehicle Modeling and Simulation

2002-05-07
2002-01-1568
This paper describes the driver/vehicle modeling aspects of a computer simulation that can respond to highway engineering descriptions of roadways. The driver model interacts with a complete vehicle dynamics model that has been described previously. The roadway path is described in terms of horizontal and vertical curvature and cross slopes of lanes, shoulders, side slopes and ditches. Terrain queries are made by the vehicle dynamics to locate tires on the roadway cross-section, and to define vehicle path and road curvature at some distance down the road. The driver model controls steering to maintain lateral lane position. Speed is maintained at a speed limit on tangents, and decreased as needed to maintain safe lateral acceleration. Because the bandwidth of longitudinal (speed) control is much lower than lateral/directional (steering) control, the driver model looks further ahead for speed control than for steering.
Technical Paper

Motion Cueing Evaluation of Off-Road Heavy Vehicle Handling

2016-09-27
2016-01-8041
Motion cueing algorithms can improve the perceived realism of a driving simulator, however, data on the effects on driver performance and simulator sickness remain scarce. Two novel motion cueing algorithms varying in concept and complexity were developed for a limited maneuvering workspace, hexapod/Stuart type motion platform. The RideCue algorithm uses a simple swing motion concept while OverTilt Track algorithm uses optimal pre-positioning to account for maneuver characteristics for coordinating tilt adjustments. An experiment was conducted on the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Ride Motion Simulator (RMS) platform comparing the two novel motion cueing algorithms to a pre-existing algorithm and a no-motion condition.
X