Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Technical Paper

Numerical Modelling and Experimental Validation of the Thermal Behavior of Li-ion Batteries for EVs Applications

2023-08-28
2023-24-0153
In this work, a dynamic 0-D electro-thermal model of a lithium-polymer battery for automotive applications is presented. The model predicts the battery temperature during its charging/discharging phases under different environmental and operating conditions, by considering the requested power or current, the coolant flow rate and its temperature as model inputs. The model was first validated with experimental data carried out at the test bench where only the convective heat transfer between the battery and the ambient air was considered. The accuracy of the internal heat generation model was experimentally assessed for different current discharge rates. Then, a liquid cooling system was designed on purpose, assembled, and installed on the battery at the test bench for the improvement of the model predictions in liquid convection conditions.
Technical Paper

Zero-dimensional Model and Pressure Data Analysis of a Variable-Displacement Lubricating Vane Pump

2009-06-15
2009-01-1859
A zero-dimensional dynamic model was developed in the Matlab/Simulink® environment to predict the behaviour of a variable-displacement lubricating vane pump for internal combustion engine applications. Based on the geometric and kinematic characteristics of the pump, the model allows predictions of the pressure evolution in each chamber of the pump and in the delivery piping, by employing an integrative-derivative approach. Simulation results were compared with experimental data of pressure transducers, which were fitted along the periphery of the pump case and in the delivery channel. The analysis of the experimental data shows that the pressure dynamics, which is experienced by the transducers, is in some cases quite different from the pressure dynamics in the pump chambers and produces pressure peaks which are not actually present in the original signal. The pressure transducers output was then also modelled in order to properly compare simulation results and experimental data.
X