Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Journal Article

An Analytical Approach for Calculating Instantaneous Multilayer-Coated Wall Surface Temperature in an Engine

2020-04-14
2020-01-0160
Thermal swing coatings that have low volumetric heat capacity and low thermal conductivity are attractive because they have the potential to significantly reduce heat transfer to the combustion chamber walls. This paper presents an analytical method for determining the exact solution of the time-resolved wall temperature during the engine cycle for any number of coating layers and properties using the Laplace transformed heat diffusion equation. The method relies only on material properties and the past heat flux history, and represents the exact solution of the heat diffusion equation. The analytical nature of the solution enables fast computation and, therefore, application to system-level optimization calculations. The model relies on an assumption of one-dimensional heat flow, and constant material properties.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Journal Article

Data Normalization Schemes for Assessing Mixture Stratification from PLIF Data

2008-04-14
2008-01-1070
Planar laser-induced fluorescence (PLIF) has become a useful diagnostic for the quantification of in-cylinder flowfield conditions, and in many applications determining the homogeneity of the in-cylinder flowfield is of primary importance. In some cases, noise associated with this imaging technique (i.e., camera noise, shot-to-shot laser energy variation, and laser sheet profile variations) can dominate the flowfield inhomogeneities, leading to biased mixture stratification statistics. Presented herein are three data normalization schemes (global-, image-, and ray-mean) that can be used to correct for these noise sources when assessing mixture stratification from PLIF data. The normalization schemes are applied to in-cylinder PLIF data obtained over a wide range of inhomogeneity levels, and the conditions over which the use of each normalization scheme is appropriate are discussed.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Development of a Simple Model to Predict Spatial Distribution of Cycle-Averaged Wall Heat Flux Using Artificial Neural Networks

2003-09-16
2003-32-0018
The KIVA 3V code has been applied to predict combustion chamber heat flux in an air-cooled utility engine. The KIVA heat flux predictions were compared with experimentally measured data in the same engine over a wide range of operating conditions. The measured data were found to be approximately two times larger than the predicted results, which is attributed to the omission of chemical heat release in the near-wall region for the heat transfer model applied. Modifying the model with a simple scaling factor provided a good comparison with the measured data for the full range of engine load, heat flux sensor location, air-fuel ratio and spark timings tested. The detailed spatially resolved results of the KIVA predictions were then used to develop a simplified model of the combustion chamber temporally integrated heat flux using an artificial neural network (ANN).
Journal Article

Estimation of Surface Heat Flux in IC Engines Using Temperature Measurements: Processing Code Effects

2012-04-16
2012-01-1208
Heat transfer in internal combustion engines is taking on greater importance as manufacturers strive to increase efficiency while keeping pollutant emissions low and maintaining adequate performance. Wall heat transfer is experimentally evaluated using temperature measurements both on and below the surface using a physical model of conduction in the wall. Three classes of model inversion are used to recover heat flux from surface temperature measurements: analytical methods, numerical methods and inverse heat conduction methods; the latter method has not been previously applied to engine data. This paper details the inherent assumptions behind, required steps for implementation of, and merits and weaknesses of these heat flux calculation methods. The analytical methods, which have been most commonly employed for engine data, are shown to suffer from sensitivity to measurement noise that requires a priori signal filtering.
Technical Paper

Fuel Film Temperature and Thickness Measurements on the Piston Crown of a Direct-Injection Spark-Ignition Engine

2005-04-11
2005-01-0649
Fuel film temperature and thickness were measured on the piston crown of a DISI engine under both motored and fired conditions using the fiber-based laser-induced fluorescence method wherein a single fiber delivers the excitation light and collects the fluorescence. The fibers were installed in the piston crown of a Bowditch-type optical engine and exited via the mirror passage. The fuel used for the fuel film temperature measurement was a 2×10-6 M solution of BTBP in isooctane. The ratio of the fluorescence intensity at 515 to that at 532 nm was found to be directly, but not linearly, related to temperature when excited at 488 nm. Effects related to the solvent, solution aging and bleaching were investigated. The measured fuel film temperature was found to closely follow the piston crown metal temperature, which was measured with a thermocouple.
Technical Paper

Large Eddy Simulation of Scalar Dissipation Rate in an Internal Combustion Engine

2010-04-12
2010-01-0625
A novel algebraic similarity model for subgrid scalar dissipation rate has been developed as part of the Large Eddy Simulation (LES) package KIVA3V-LES for diesel engine study. The model is proposed from an a priori study using Direct Numerical Simulation (DNS) of forced isotropic turbulence. In the a posteriori test, fully resolved turbulent passive scalar field measurements are used to validate the model in actual engine flows. For reason of the length limit by SAE and the specific interest in engine applications, only a prior test and a posteriori test in engine flows are included in this paper. A posteriori tests in isotropic cube flow, turbulent round jet and flame cases will be presented in separate papers. An engine LES simulation of multi consecutive cycles was performed in this study.
Technical Paper

On the Calibration of Single-Shot Planar Laser Imaging Techniques in Engines

2002-03-04
2002-01-0748
The noise characteristics of four camera systems representative of those typically used for laser-imaging experiments (a back-illuminated slow-scan camera, a frame-straddling slow-scan camera, an intensified slow-scan camera and an intensified video-rate camera) were investigated, and the results are presented as a function of the signal level and illumination level. These results provide the maximum possible signal-to-noise ratio for laser-imaging experiments, and represent the limit of quantitative signal interpretation. A calibration strategy for engine data that limits the uncertainties associated with thermodynamic and optical correction was presented and applied to engine data acquired with two of the camera systems. When a rigorous analysis of the signal is performed it is seen that shot noise limits the quantitative interpretation of the data for most typical laser-imaging experiments, and obviates the use of single-pixel data.
Technical Paper

Optimization of Finpack Design for Finned Cylinder with Nonuniform Heat Flux Applied to the Inner Surface

2004-09-27
2004-32-0082
An axisymmetric one-dimensional finite difference model has been developed to investigate the optimization of external fins on a cylindrical tube with a non-uniform heat flux applied to the inner surface. The heat flux boundary condition applied to the inner surface was determined from detailed 3-dimensional calculations using the KIVA code. The external convective boundary condition was determined from published correlations. This model encompasses the basic geometry of an air-cooled engine cylinder. The model was computationally efficient and allowed for the optimization of the fin length of each fin and its location. A genetic algorithm optimization procedure was utilized. The results show that optimum usage of material is obtained from fins of comparable length distributed over the entire outer cylinder, in spite of the concentrated heat flux at the upper end of the cylinder. The results indicate the important role of axial conduction in the thermal energy balance of this system.
Technical Paper

Preliminary Results from a Simplified Approach to Modeling the Distribution of Engine Knock

2012-10-23
2012-32-0004
In this paper, three models for the prediction of knock onset timing are compared: an ignition-integral model using a simple ignition delay correlation, an ignition-integral model using a pre-computed lookup table of ignition delays, and the direct integration of a detailed chemical kinetic mechanism. All three models were found to compare well with experimentally measured results; the correlation-based knock-integral model was found to be as accurate as the other methods and was computationally far more efficient. The direct integration approach correlated very well with the experimental data but was delayed by 1-2 crank angles. The simplified models have been used in conjunction with a Monte-Carlo approach to assess the cycle-by-cycle variations in knock onset timing. A statistical comparison between the Monte-Carlo predictions and experimental results showed a good prediction of the distribution widths, and some modest phasing issues over a wide range of ignition timing.
Technical Paper

Scavenging Measurements in a Direct-Injection Two-Stroke Engine

2003-09-16
2003-32-0081
The scavenging process in a direct-injection two-stroke research engine was examined by using an electromagnetically controlled poppet valve to sample the trapped charge. A physical model was developed to characterize the scavenging based solely on the measured trapped gas composition. This method obviates the need to measure the post-combustion composition of the trapped charge, which significantly eases the sampling valve requirements. The valve that was developed proved to be very robust and was able to sample over 30% of the trapped mass at 3000 rpm. The measured scavenging efficiency was found to agree well with the non-isothermal two-zone perfect mixing limit of scavenging. The scavenging efficiency was found to increase with delivery ratio, and was nearly independent of speed.
X