Refine Your Search

Topic

Search Results

Technical Paper

A Laboratory Technique for Assessing the Skin Abrasion Potential of Airbags

1993-03-01
930644
In recent investigations of airbag deployments, drivers h v c reported abrasions to the face, neck, and forearms due to deploying airbags, A study of the airbag design and deployments parameters affecting the incidence and severity of abrasions caused by driver-side airbags has led to the development of a laboratory test procedure to evaluate the potential of an airbag design m cause skin injury This report describes the procedure, which is based an static deployments of airbags into a cylindrical lest fixture. The target area is covered with a material that responds to abrasion-producing events in a manner related to human skin tolerance. Test results show excellent correlation with abrasion injuries produced by airbag deployments into the skin of human volunteers.
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

A Pilot Study of Occupant Accommodation and Seat Belt Fit for Law Enforcement Officers

2016-04-05
2016-01-1504
Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
Technical Paper

ASPECT Manikin Applications and Measurements for Design, Audit, and Benchmarking

1999-03-01
1999-01-0965
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) manikin provides new capabilities for vehicle and seat measurement while maintaining continuity with previous practices. This paper describes how the manikin is used in the development of new designs, the audit verification of build, and in benchmarking competitive vehicles and seats. The measurement procedures are discussed in detail, along with the seat and package dimensions that are associated with the new tool.
Technical Paper

ASPECT: The Next-Generation H-Point Machine and Related Vehicle and Seat Design and Measurement Tools

1999-03-01
1999-01-0962
The ASPECT program was conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools. This paper presents a summary of the objectives, methods, and results of the program. The primary goal of ASPECT was to create a new generation of the SAE J826 H-point machine. The new ASPECT manikin has an articulated torso linkage, revised seat contact contours, a new weighting scheme, and a simpler, more user-friendly installation procedure. The ASPECT manikin simultaneously measures the H-point location, seat cushion angle, seatback angle, and lumbar support prominence of a seat, and can be used to make measures of seat stiffness. In addition to the physical manikin, the ASPECT program developed new tools for computer-aided design (CAD) of vehicle interiors. The postures and positions of hundreds of vehicle occupants with a wide range of body size were measured in many different vehicle conditions.
Technical Paper

ATD Positioning Based on Driver Posture and Position

1998-11-02
983163
Current ATD positioning practices depend on seat track position, seat track travel range, and design seatback angle to determine appropriate occupant position and orientation for impact testing. In a series of studies conducted at the University of Michigan Transportation Research Institute, driver posture and position data were collected in forty-four vehicles. The seat track reference points currently used to position ATDs (front, center, and rear of the track) were found to be poor predictors of the average seat positions selected by small female, midsize male, and large male drivers. Driver-selected seatback angle was not closely related to design seatback angle, the measure currently used to orient the ATD torso. A new ATD Positioning Model was developed that more accurately represents the seated posture and position of drivers who match the ATD statures.
Technical Paper

Anthropometric and Postural Variability: Limitations of the Boundary Manikin Approach

2000-06-06
2000-01-2172
Human figure models are commonly used to facilitate ergonomic assessments of vehicle driver stations and other workplaces. One routine method of workstation assessment is to conduct a suite of ergonomic analyses using a family of boundary manikins, chosen to represent a range of anthropometric extremes on several dimensions. The suitability of the resulting analysis depends both on the methods by which the boundary manikins are selected and on the methods used to posture the manikins. The automobile driver station design problem is used to examine the relative importance of anthropometric and postural variability in ergonomic assessments. Postural variability is demonstrated to be nearly as important as anthropometric variability when the operator is allowed a substantial range of component adjustment. The consequences for boundary manikin procedures are discussed, as well as methods for conducting accurate and complete assessments using the available tools.
Technical Paper

Anthropometry for WorldSID A World-Harmonized Midsize Male Side Impact Crash Dummy

2000-06-19
2000-01-2202
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Technical Paper

Automobile Occupant Posture Prediction for Use with Human Models

1999-03-01
1999-01-0966
A new method of predicting automobile occupant posture is presented. The Cascade Prediction Model approach combines multiple independent predictions of key postural degrees of freedom with inverse kinematics guided by data-based heuristics. The new model, based on posture data collected in laboratory mockups and validated using data from actual vehicles, produces accurate posture predictions for a wide range of passenger car interior geometries. Inputs to the model include vehicle package dimensions, seat characteristics, and occupant anthropometry. The Cascade Prediction Model was developed to provide accurate posture prediction for use with any human CAD model, and is applicable to many vehicle design and safety assessment applications.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Cervical Spine Geometry in the Automotive Seated Posture: Variations with Age, Stature, and Gender

2004-11-01
2004-22-0014
In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 “normal” adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects’ cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender. After scanning the radiographic images, 108 skeletal landmarks on the cervical vertebrae and 10 head landmarks were digitized.
Technical Paper

Characterization of Driver Seatbelt Donning Behavior

2002-03-04
2002-01-0783
Improvements in the accessibility and ease of use of seatbelts require an understanding of driver belt donning behavior. Participants in a study of driving posture were videotaped as they put on their belts in their own vehicles, either an SUV or a midsize sedan. The participants were unaware that the purpose of the videotaping was related to the seatbelt. Videos from 95 men and women were analyzed to identify several categories of belt-donning behavior and to analyze the influence of body dimensions. The results have applicability to seatbelt system design, including the use of human figure models to assess seatbelt accessibility.
Technical Paper

Characterization of Knee-Thigh-Hip Response in Frontal Impacts Using Biomechanical Testing and Computational Simulations

2008-11-03
2008-22-0017
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole and segmented cadavers were measured over a wide range of knee loading conditions. These data were used to develop and help validate a computational model, which was used to estimate force transmitted to the cadaver hip. Approximately 250 tests were conducted using five unembalmed midsize male cadavers. In these tests, the knees were symmetrically impacted with a 255-kg padded impactor using three combinations of knee-impactor padding and velocity that spanned the range of knee loading conditions produced in FMVSS 208 and NCAP tests. Each subject was tested in four conditions.
Technical Paper

Comparison of Airbag-Aggressivity Predictors in Relation to Forearm Fractures

1998-02-23
980856
Four unembalmed human cadavers were used in eight direct-forearm-airbag-interaction static deployments to assess the relative aggressivity of two different airbag modules. Instrumentation of the forearm bones included triaxial accelerometry, crack detection gages, and film targets. The forearm-fracture predictors, peak and average distal forearm speed (PDFS and ADFS), were evaluated and compared to the incidence of transverse, oblique, and wedge fractures of the radius and ulna. Internal-airbag pressure and axial column loads were also measured. The results of this study support the use of PDFS or ADFS for the prediction of airbag-induced upper-extremity fractures. The results also suggest that there is no direct relationship between internal-airbag pressure and forearm fracture. The less-aggressive system (LAS) examined in this study produced half the number of forearm fracture as the more-aggressive system (MAS), yet exhibited a more aggressive internal-pressure performance.
Technical Paper

Comparison of Child Body Dimensions with Rear Seat Geometry

2006-04-03
2006-01-1142
Children who are too large for harness restraints but too small to obtain good restraint from a vehicle seatbelt alone should be seated in a belt-positioning booster. Boosters have been shown to significantly reduce abdominal injuries caused by seatbelts. This effectiveness may be due in part to the fact that boosters reduce the effective seat cushion length, allowing children to sit more comfortably without slouching. NHTSA recommends that children who do not use harness restraints use boosters until they are at least 145 cm tall. In this paper, data from several sources were combined to assess how well children fit on rear seat cushions. Data from NASS-GES were analyzed to determine the age distribution of rear-seat occupants. Anthropometric data from several sources were analyzed to determine the distribution of buttock-popliteal length, a measure of thigh length that is a key determinant of seat fit, as a function of age and gender.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

2000-06-06
2000-01-2180
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

Design and Development of the ASPECT Manikin

1999-03-01
1999-01-0963
The primary objective of the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program was to develop a new generation of the SAE J826 H-point manikin. The new ASPECT manikin builds on the long-term success of the H-point manikin while adding new measurement capability and improved ease of use. The ASPECT manikin features an articulated torso linkage to measure lumbar support prominence; new contours based on human subject data; a new weighting scheme; lightweight, supplemental thigh, leg, and shoe segments; and a simpler, user-friendly installation procedure. This paper describes the new manikin in detail, including the rationale and motivation for the design features. The ASPECT manikin maintains continuity with the current SAE J826 H-point manikin in important areas while providing substantial new measurement capability.
Technical Paper

Development of ATD Installation Procedures Based on Rear-Seat Occupant Postures

2005-11-09
2005-22-0018
The initial positioning of anthropomorphic test devices (ATDs) can influence the outcomes of crash tests. Current procedures for positioning ATDs in rear seats are not based on systematic studies of passenger postures. This paper compares the postures of three side-impact ATDs to the postures of 24 men and women in three vehicle rear seats and 16 laboratory conditions. When positioned using current procedures, the locations of the ES-2 and SID-HIII ATD heads are generally rearward of those observed with similar-size passengers. The SID-IIs head locations matched the expected locations of heads of passengers of similar size more closely. As the seat back angle was increased, people reclined less than the ATDs. Based on these findings, a new ATD positioning procedure for rear seats was developed. The primary objective of the new procedure is to place the ATD head in the location that is most likely for people of similar size.
Technical Paper

Development of Anthropometric Specifications for the Six-Year-Old OCATD

2001-03-05
2001-01-1057
Advanced airbag systems use information from a variety of sensors to tune the airbag performance for crash severity and occupant characteristics. A new family of Occupant Classification ATDs (OCATD) have been developed for use in the design and testing of advanced airbag systems. This paper describes the development of anthropometric standards for an OCATD that represents a typical six-year-old child. Detailed analyses of existing child anthropometry databases were conducted to develop reference dimensions. A child who closely matched the reference dimensions was measured in a variety of conditions. A custom molded measurement seat was constructed using foam-in-place seating material. The surface of the child's body was scanned as he sat in the custom seat, and the three-dimensional locations of body landmarks defining the skeleton position were recorded.
X