Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Neural Network Based Feedforward Control for Electronic Throttles

2002-03-04
2002-01-1149
This paper addresses feedforward tracking control for electronic throttles. A robust and accurate tracking control scheme based on the training of a Neural Network model and feedback term (PID) is developed. The Neural Network based term can be trained off-line. This feedfoward term serves as a mathematical model capable of describing Electronic Throttle dynamics over a wide range. We have shown that by adding the Neural Network based feedforward control to a common feedback control method, such as the gain-scheduled PID used in many ETC production controllers, that the tracking control performance criteria such as transient errors, steady state errors, response time and overshoot, are greatly improved. Experiments conducted on a production Electronic Throttle Body with a Motorola H-brigde driver IC have shown good results utilizing this approach.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
X