Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

High Efficiency and Low Emissions from a Port-Injected Engine with Neat Alcohol Fuels

2002-10-21
2002-01-2743
Ongoing work with methanol- and ethanol-fueled engines at the EPA's National Vehicle and Fuel Emissions Laboratory has demonstrated improved brake thermal efficiencies over the baseline diesel engine and low steady state NOx, HC and CO, along with inherently low PM emissions. In addition, the engine is expected to have significant system cost advantages compared with a similar diesel, mainly by virtue of its low-pressure port fuel injection (PFI) system. While recognizing the considerable challenge associated with cold start, the alcohol-fueled engine nonetheless offers the advantages of being a more efficient, cleaner alternative to gasoline and diesel engines. The unique EPA engine used for this work is a turbocharged, PFI spark-ignited 1.9L, 4-cylinder engine with 19.5:1 compression ratio. The engine operates unthrottled using stoichiometric fueling from full power to near idle conditions, using exhaust gas recirculation (EGR) and intake manifold pressure to modulate engine load.
Technical Paper

Selective Interrupt and Control: An Open ECU Alternative

2018-04-03
2018-01-0127
To enable the evaluation of off-calibration powertrain operation, a selective interrupt and control (SIC) test capability was developed as part of an EPA evaluation of a 1.6 L EcoBoost® engine. A control and data acquisition device sits between the stock powertrain controller and the engine; the device selectively passes through or modifies control signals while also simulating feedback signals. This paper describes the development process of SIC that enabled a test engineer to command off-calibration setpoints for intake and exhaust cam phasing as well as ignition timing without the need for an open ECU duplicating the stock calibration. Results are presented demonstrating the impact of ignition timing and cam phasing on engine efficiency. When coupled with combustion analysis and crank-domain data acquisition, this test configuration provides a complete picture of powertrain performance.
X