Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2011-09-11
2011-24-0080
The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Technical Paper

Conversion of a Multivalve Gasoline Engine to Run on CNG

2000-03-06
2000-01-0673
A production SI engine originally designed at Fiat Auto to operate with unleaded gasoline was converted to run on natural gas. To that end, in addition to designing and building the CNG fuel plant, it was necessary to replace the multipoint electronic module for injection-duration and ignition-timing control with an ECM designed to obtain multipoint sequential injection. The engine was modified so as to work either with gasoline or natural gas. For the present investigation, however, the engine configuration was not optimized for running on methane, in order to compare the performance of the engine operated by the two different fuels with the same compression ratio. In fact, the engine is also interesting as a dual-fuel engine because of its relatively high compression ratio ≈10.5 that is almost suitable for CNG operation. The engine had the main features of being a multivalve, fast-burn pent-roof chamber engine with a variable intake-system geometry.
Technical Paper

Development and Assessment of a Multizone Combustion Simulation Code for SI Engines Based on a Novel Fractal Model

2006-04-03
2006-01-0048
A combustion simulation code for the prediction of heat release, flame propagation speed and pollutant formation in SI engines was developed and assessed. It is based on a multizone combustion model that takes the non-uniform spatial distribution of the in-cylinder burned-gas thermochemical properties into account. The multizone approach for burning rate calculation is coupled with a CAD procedure for the evaluation of burned-gas front area and radius. Specifically developed sub-models for determining CO and NO formation are included in the code. An original model based on the fractal geometry concept was used to describe the entrainment of fresh mixture through the flame front.
Journal Article

Development and Validation of a Real-Time Model for the Simulation of the Heat Release Rate, In-Cylinder Pressure and Pollutant Emissions in Diesel Engines

2016-01-15
2015-01-9044
A real-time mean-value engine model for the simulation of the HRR (heat release rate), in-cylinder pressure, brake torque and pollutant emissions, including NOx and soot, has been developed, calibrated and assessed at both steady-state and transient conditions for a Euro 6 1.6L GM diesel engine. The chemical energy release has been simulated using an improved version of a previously developed model that is based on the accumulated fuel mass approach. The in-cylinder pressure has been evaluated on the basis of the inversion of a single-zone model, using the net energy release as input. The latter quantity was derived starting from the simulated chemical energy release, and evaluating the heat transfer of the charge with the walls. NOx and soot emissions were simulated on the basis of semi-empirical correlations that take into account the in-cylinder thermodynamic properties, the chemical energy release and the main engine parameters.
Technical Paper

Thermal Effect Simulation in High-Pressure Injection System Transient Flows

2004-03-08
2004-01-0532
Temperature variations due to compressibility effects of the liquid fuel were evaluated, for the first time in high-pressure injection system simulation, by employing the energy conservation equation, in addition to the mass-continuity and momentum-balance equations, as well as the constitutive state equation of the liquid. To that end, the physical properties (bulk elasticity modulus, thermal expansivity, kinematic viscosity) of the fluid were used as analytic functions of pressure and temperature obtained by interpolating carefully determined experimental data. Consistent with negligible thermal effects of heat transfer and viscous power losses involved in the flow process, the equation of energy was reduced to a state relation among the fluid thermodynamic properties, leading to a barotropic flow model.
Technical Paper

Unsteady Convection Model for Heat Release Analysis of IC Engine Pressure Data

2000-03-06
2000-01-1265
A contribution has been given to the thermodynamics approach usually used for analyzing the combustion process in IC engines on the basis of cylinder pressure data reduction. A survey of heat release type combustion models and of their calibration methods has first been carried out with specific attention paid to the bulk gas-wall heat transfer correlations used. Experimental results have given evidence that most of these correlations are incapable of predicting the phase shift occurring between the gas-wall temperature difference and the heat transfer during the engine compression and expansion strokes, owing to the transient properties of the fluid directly in contact with the wall. This work develops and applies a refined procedure for heat release analysis of cylinder pressure data including the unsteadiness effects of the convective heat transfer process.
X