Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

MMLV: NVH Sound Package Development and Full Vehicle Testing

2015-04-14
2015-01-1615
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-1 vehicle design, comprised of commercially available materials and production processes, achieved a 364 kg (23.5%) full vehicle mass reduction, enabling the application of a 1-liter 3-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper includes details associated with the noise, vibration and harshness (NVH) sound package design and testing. Lightweight design actions on radiating panels enclosing the vehicle cabin typically cause vehicle interior acoustic degradation due to the reduction of panel surface mass.
Technical Paper

Random Incidence Sound Absorption Measurement of Automotive Seats in Small Size Reverberation Rooms

2007-05-15
2007-01-2194
Random incidence sound absorption measurements of automotive components such as floor carpets, seats, headliners and hoodliners are important during the design and development of noise control treatments in a vehicle. Small volume reverberation rooms [1]1 have been widely used in practice to determine the absorption properties of those components. The SAE Acoustical Materials Committee has organized a task force to develop a standard procedure for measuring random incidence sound absorption properties of flat samples, as well as automotive components in small reverberation rooms. Statistical analysis and correlation study between large reverberation rooms and small reverberation rooms of flat samples using data acquired from a recent round robin study were reported in SAE Paper 2005-01-2284 [2, 3].
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Technical Paper

Sound Package Development for Lightweight Vehicle Design using Statistical Energy Analysis (SEA)

2015-06-15
2015-01-2302
Lightweighting of vehicle panels enclosing vehicle cabin causes NVH degradation since engine, road, and wind noise acoustic sources propagate to the vehicle interior through these panels. In order to reduce this NVH degradation, there is a need to develop new NVH sound package materials and designs for use in lightweight vehicle design. Statistical Energy Analysis (SEA) model can be an effective CAE design tool to develop NVH sound packages for use in lightweight vehicle design. Using SEA can help engineers recover the NVH deficiency created due to sheet metal lightweighting actions. Full vehicle SEA model was developed to evaluate the high frequency NVH performance of “Vehicle A” in the frequency range from 200 Hz to 10 kHz. This correlated SEA model was used for the vehicle sound package optimization studies. Full vehicle level NVH laboratory tests for engine and tire patch noise reduction were also conducted to demonstrate the performance of sound package designs on “Vehicle A”.
X