Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimization of Exhaust Gas Distribution on the Catalytic Converter Inlet-Cone Diffuser using Advanced Shape Deformation Technology

2006-04-03
2006-01-1439
The Objective of this paper is to explain a procedure for using Arbitrary Shape Deformation (ASD) technology coupled with Computational Fluid Dynamics (CFD) software for product development of a generic catalytic converter inlet-cone diffuser. The paper uses the development of an inlet-cone diffuser as an example of such a process. The non-uniformities of the flow field at the inlet of the catalytic converter bricks are considered to have a negative impact on the converter performance. Computational Fluid Dynamics (CFD) is a powerful tool for computing the flow field in the exhaust system and the catalytic converter which enables the engineers to optimize the geometry of the inlet cone at a very early design stage. The goal of this study is to optimize the shape of an inlet-cone diffuser upstream of a catalytic converter to reduce the pressure drop and maximize the uniformity of exhaust gas distribution on the catalytic converter inlet.
Technical Paper

Sliding Mesh Fan Approach Using Open-Source Computational Fluid Dynamics to Investigate Full Vehicle Automotive Cooling Airflows

2023-04-11
2023-01-0761
Cooling airflow is an essential factor when it comes to vehicle performance and operating safety. In recent years, significant efforts have been made to maximize the flow efficiency through the heat exchangers in the under-hood compartment. Grille shutters, new fan shapes, better sealings are only some examples of innovations in this field of work. Underhood cooling airflow simulations are an integral part of the vehicle development process. Especially in the early development phase, where no test data is available to verify the cooling performance of the vehicle, computational fluid dynamics simulations (CFD) can be a valuable tool to identify the lack of fan performance and to develop the appropriate strategy to achieve airflow goals through the heat exchangers. For vehicles with heat exchangers in the underhood section the airflow through those components is of particular interest.
X