Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

A Comparison of Ammonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG)

2012-04-16
2012-01-1095
Vehicular ammonia emissions are currently unregulated, even though ammonia is harmful for a variety of reasons, and the gas is classed as toxic. Ammonia emissions represent a serious threat to air quality, particularly in urban settings; an ammonia emissions limit may be introduced in future legislation. Production of ammonia within the cylinder has long been known to be very limited. However, having reached its light-off temperature, a three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. Production of ammonia is symptomatic of overly reducing conditions within the three-way catalyst (TWC), and depends somewhat upon the particular precious metals used. Emission is markedly higher during periods where demand for engine power is higher, when the engine will be operating under open-loop conditions.
Technical Paper

Accelerated Ageing Method of Three Way Catalyst Run on Test Bed with Emission Performance and Oxygen Storage Capacity Evaluation

2020-09-15
2020-01-2189
The aim of this paper was to describe a method of accelerated three way catalytic converter (TWC) ageing performed on the engine test bed for European On Board Diagnostics (EOBD) monitoring purposes and screening of different catalysts solutions. To accelerate the catalyst ageing process, the exhaust gas temperature was elevated to a range 1000 - 1200°C, which is typical for an ageing cycle performed using ovens. Catalyst emissions performance was checked at new condition (after degreening) and subsequently at predefined ageing intervals, based on the oxygen storage capacity (OSC) evaluation. The emission tests were performed in the laboratory on the chassis dynamometer using legislative cycles. The accelerated ageing method was found to be of use for verifying the EOBD functionality under vehicle operation with a degraded catalyst substrate.
Technical Paper

Chassis Dynamometer Testing of Ammonia Emissions from Light-Duty SI Vehicles in the Context of Emissions of Reactive Nitrogen Compounds

2013-04-08
2013-01-1346
Ammonia is a reactive nitrogen compound (RNC - nitrogen-based gaseous molecules with multiple adverse impacts on human health and the biosphere). A three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. This study presents a brief literature review, and presents experimental data on ammonia emissions from seven Euro 5 passenger cars, using different gasoline fuels and a CNG fuel. All vehicles were tested on a chassis dynamometer over the New European Driving Cycle. For six of the vehicles, ammonia was quantified directly at tailpipe (using two different analyzers); emissions from one vehicle were subjected to Fourier Transform Infra-Red (FTIR) analysis. Emissions of ammonia from these vehicles were generally low in comparison to other chassis dynamometer studies, perhaps attributable to the favorable laboratory test conditions and the age of the vehicles.
Technical Paper

Exhaust Emissions from an SUV with a Spark-Ignition Engine Tested Using EU and US Legislative Driving Cycles and EU RDE Procedures

2021-04-06
2021-01-0616
Despite an overall trend towards harmonization in vehicle regulations, regional differences persist in the area of exhaust emissions and fuel economy. The test procedure employed can exert a significant impact on the results obtained. In this paper, the EU and US type approval procedures for light duty vehicles are briefly compared and results obtained from several types of test procedure are presented. Specifically, emissions tests were performed on a single SUV which met US Tier III emissions limits. The vehicle featured a conventional, naturally aspirated spark ignition engine with indirect fuel injection and an aftertreatment system consisting of three-way catalysts with no dedicated particulate filtration device. The vehicle’s engine displacement, total mass and power-to-mass ratio were relatively representative of the upper end of the US market, but represented an outlying vehicle in terms of the characteristics of the EU fleet.
Journal Article

Performance of Particle Oxidation Catalyst and Particle Formation Studies with Sulphur Containing Fuels

2012-04-16
2012-01-0366
The aim of this paper is to analyze the quantitative impact of fuel sulfur content on particulate oxidation catalyst (POC) functionality, focusing on soot emission reduction and the ability to regenerate. Studies were conducted on fuels containing three different levels of sulfur, covering the range of 6 to 340 parts per million, for a light-duty application. The data presented in this paper provide further insights into the specific issues associated with usage of a POC with fuels of higher sulfur content. A 48-hour loading phase was performed for each fuel, during which filter smoke number, temperature and back-pressure were all observed to vary depending on the fuel sulfur level. The Fuel Sulfur Content (FSC) affected also soot particle size distributions (particle number and size) so that with FSC 6 ppm the soot particle concentration was lower than with FSC 65 and 340, both upstream and downstream of the POC.
Technical Paper

RDE Testing of Passenger Cars: The Effect of the Cold Start on the Emissions Results

2019-04-02
2019-01-0747
This paper discusses the importance of the inclusion of emissions from the cold start event during legislative on-road tests on passenger cars (RDE - real driving emissions tests conducted under real-world driving conditions, as defined by EU legislation). Results from a recently-registered gasoline-powered vehicle are presented, with the main focus on the comparison of exhaust emission results: excluding/including the cold start during the initial phase of the RDE test. Cold start is the most challenging aspect of emissions control for vehicles with spark ignition engines and the inclusion of the cold start event in RDE test procedure has wide-ranging implications both for the testing process and compliance with RDE legislation via optimisation of aftertreatment systems and the engine calibration. In addition to some theoretical arguments, the results of an RDE-compliant test performed using the aforementioned procedures are presented.
Technical Paper

The Formation of Ammonia in Three-Way Catalysts Fitted to Spark Ignition Engines - Mechanisms and Magnitudes

2022-08-30
2022-01-1026
Exhaust gas aftertreatment systems can, under certain conditions, create undesired chemical species as a result of their elimination reactions. A prime example of this is ammonia (NH3), which is not formed in the combustion reaction, but which can be formed within a three-way catalyst (TWC) when physicochemical conditions permit. The elimination of NOx in the TWC thus sometimes comes at the cost of significant emissions of NH3. Ammonia is a pollutant and a reactive nitrogen compound (RNC) and NH3 emissions should be analyzed in this context, alongside other RNC species. Examination of the literature on the subject published over the past two decades shows that ammonia, a species which is currently not subject to systematic emissions requirements for road vehicles in any market, is often identified as forming the majority of the RNC emissions under a range of operating conditions.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions

2007-01-23
2007-01-0069
In the year 2005, the EURO IV fuel specification came into effect and the requirements for diesel fuel properties have become even more stringent. In this way, the potential of diesel fuel for emissions reduction has already been to a large extent exploited and the most emissions-sensitive fuel parameters can now be changed in a narrow range only. The shortfall in NOx and PM emissions control in diesel engines is, however, so great that more drastic fuel changes will be needed. One of the most promising fuel modifications for exhaust emissions control seems to be oxygenated additives. The objective of the study described in this paper was to analyze under transient conditions the influence of synthetic oxygenated fuel additives on exhaust emissions. The tests were conducted on a Euro IV passenger car. Six oxygenated additives were tested over the New European Driving Cycle (NEDC).
Technical Paper

The Variation of Functional Characteristics of a Euro VI Selective Catalytic Reduction Reactor after Ageing

2020-09-15
2020-01-2205
The selective catalytic reduction (SCR) of nitrogen oxides by ammonia is commonly applied as a method of exhaust aftertreatment for lean burn compression ignition (CI) engines. The catalytic reactor of an SCR system, like all catalytic emission control devices, is susceptible to partial deactivation as its operating time progresses. Long-term exposure of an SCR reactor to exhaust gas of fluctuating temperature and composition results in variations of the characteristics of its catalytically active layer. The aim of this study was to observe and investigate the variation of parameters characterizing the SCR reactor as a result of its ageing. Attention was paid to changes in ammonia storage capacity, selectivity of chemical reactions and maximum achievable NOx conversion efficiency. The experimental setup was a heavy duty (HD) Euro VI-compliant engine and its aftertreatment system (ATS). The setup was installed on a transient engine dyno instrumented with emission measurement devices.
X