Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A New Calibration Specification for Linear Displacement Transducers

2006-04-03
2006-01-0719
Linear displacement transducers may be used to measure deflection and, based on time histories, calculate rates of deflection and viscous criterion (VC). The current study documents that these transducers are subject to damage affecting the linearity of their responses, that this damage is not uncommon, and that the deviations from linearity can greatly affect calculations of deflection rate and VC. A calibration procedure to identify transducers with significantly non-linear responses is proposed.
Technical Paper

An Algorithm to Calculate Chest Deflection from 3D IR-TRACC

2016-04-05
2016-01-1522
A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
Technical Paper

Dummy Positioning at Reclined Seating Position before Impact Testing

2024-04-09
2024-01-2490
Alongside advancements in automated vehicle technologies, occupants within vehicle compartments are enjoying increased freedom to relax and enjoy their journeys. For instance, reclined seating postures have become more prevalent and comfortable compared to upright seating when Highly Automated Vehicles (HAVs) are introduced. Unfortunately, most Anthropomorphic Testing Devices (ATD) do not support reclined postures. THOR-AV 50M is a specially designed dummy for reclined postures. As a crucial tool for developing safety restraint systems to protect reclined occupants, the first question is how to position it correctly on a reclined seat before impact testing. In this study, classical zero gravity seats were selected. H-point coordinators of selected seat at 25°, 40° and 60° seatback angle were measured and compared by using H-point machine (HPM) even though current HPM was not designed for reclined seat.
X