Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Assessment of the Ignition and Lift-off Characteristics of a Diesel Spray with a Transient Spreading Angle

2015-09-01
2015-01-1828
Multi-hole diesel fuel injectors have shown significant transients in spreading angle during injections, different than past fundamental research using single-hole injectors. We investigated the effect of a this transient spreading angle on combustion parameters such as ignition delay and lift-off length by comparing a three-hole nozzle (Spray B) and single-hole nozzle (Spray A) with holes of the same size and shape as targets for the Engine Combustion Network (ECN). With the temperature distribution for a target plume of Spray B characterized extensively in a constant-volume combustion chamber, the ignition delay and lift-off length were measured and compared. Results show that the lift-off length of Spray B increases and grows by approximately 1.5 mm after the initial stages of ignition, in an opposite trend compared to Spray A where the lift-off length decreases with time.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

Effect of Fuel Volatility and Ignition Quality on Combustion and Soot Formation at Fixed Premixing Conditions

2009-11-02
2009-01-2643
This paper presents experimental results for two fuel-related topics in a diesel engine: (1) how fuel volatility affects the premixed burn and heat release rate, and (2) how ignition quality influences the soot formation. Fast evaporation of fuel may lead to more intense heat release if a higher percentage of the fuel is mixed with air to form a combustible mixture. However, if the evaporation of fuel is driven by mixing with high-temperature gases from the ambient, a high-volatility fuel will require less oxygen entrainment and mixing for complete vaporization and, consequently, may not have potential for significant heat release simply because it has vaporized. Fuel cetane number changes also cause uncertainty regarding soot formation because variable ignition delay will change levels of fuel-air mixing prior to combustion.
Technical Paper

End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines

2007-04-16
2007-01-0907
Although low-temperature combustion (LTC) strategies for compression-ignition engines can achieve very low emissions of nitrogen oxides (NOx) and particulate matter (PM) at high efficiency, they typically have increased emissions of other pollutants, including unburned hydrocarbons (UHC). In the current study, the equivalence ratio of mixtures near the injector are quantified under non-combusting conditions by planar laser-Rayleigh scattering (PLRS) in a constant-volume combustion chamber and by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene) in a single-cylinder direct-injection heavy-duty diesel engine at typical LTC conditions. The optical diagnostic images show that the transient ramp-down at the end of fuel injection produces a low-momentum, fuel-lean mixture in the upstream region of the jet, which persists late in the cycle.
Journal Article

Gasoline Direct Injector Deposits: Impacts of Fouling Mechanism on Composition and Performance

2022-03-29
2022-01-0488
Injector performance in gasoline Direct-Injection Spark-Ignition (DISI) engines is a key focus in the automotive industry as the vehicle parc transitions from Port Fuel Injected (PFI) to DISI engine technology. DISI injector deposits, which may impact the fuel delivery process in the engine, sometimes accumulate over longer time periods and greater vehicle mileages than traditional combustion chamber deposits (CCD). These higher mileages and longer timeframes make the evaluation of these deposits in a laboratory setting more challenging due to the extended test durations necessary to achieve representative in-use levels of fouling. The need to generate injector tip deposits for research purposes begs the questions, can an artificial fouling agent to speed deposit accumulation be used, and does this result in deposits similar to those formed naturally by market fuels?
Technical Paper

Measurement of Liquid and Vapor Penetration of Diesel Sprays with a Variation in Spreading Angle

2015-04-14
2015-01-0946
The mixing field of sprays injected into high temperature and pressure environments has been observed to be tightly connected to spreading angle, therefore linking vaporization and combustion processes to the angular dispersion of the spray. Visualization of the Engine Combustion Network three-hole, Spray B diesel injector shows substantial variation in near-field spreading angle with respect to time compared to past measurements of the single-hole, Spray A injector. The source of these variations originating inside the nozzle, and the implications on mixing, evaporation, and combustion of the diesel plume, need to be understood. In this study, we characterize the ECN-target plume for a Spray B injector (Serial # 211201), which already benefits from extensive and detailed internal measurements of nozzle geometry and needle movement, while comparing to the single-hole Spray A with the same type of detailed geometry and understanding.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
X