Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains

2020-04-14
2020-01-0441
Mild hybridisation, using a 48 V system architecture, offers fuel consumption benefits approaching those achieved using high-voltage systems at a much lower cost. To maximise the benefits from a 48 V mild-hybrid system, it is desirable to recuperate during deceleration events at as high a power level as possible, whilst at the same time having a relatively compact and low cost system. This paper examines the particular requirements of the battery pack for such a mild-hybrid application and discusses the trade-offs between battery power capabilities and possible fuel consumption benefits. The technical challenges and solutions to design a 48 V mild-hybrid battery pack are presented with special attention to cell selection and the thermal management of the whole pack. The resulting battery has been designed to achieve a continuous-power capability of more than 10 kW and a peak-power rating of up to 20 kW.
Technical Paper

A New Combustion System Achieving High Drive Cycle Fuel Economy Improvements in a Modern Vehicle Powertrain

2011-04-12
2011-01-0664
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition results from the partially combusted (reacting) pre-chamber products initiating combustion in the main chamber. The distributed ignition sites enable relatively small flame travel distances enabling short combustion durations and high burn rates. Multiple benefits include extending the knock limit and initiating combustion in very dilute mixtures (excess air and or EGR), with dilution levels being comparable to other low temperature combustion technologies (HCCI), without the complex control drawbacks.
Journal Article

A Study of Fuel Converter Requirements for an Extended-Range Electric Vehicle

2010-04-12
2010-01-0832
Current focus on techniques to reduce the tailpipe carbon dioxide (CO₂) emissions of road vehicles is increasing the interest in hybrid and electric vehicle technologies. Pure electric vehicles require bulky, heavy, and expensive battery packs to enable an acceptable drivable range to be achieved. Extended-range electric vehicles (E-REVs) partly overcome the limitations of current battery technology by having an onboard fuel converter that converts a liquid fuel, such as gasoline, into electrical energy whilst the vehicle is driving. Thus enabling the traction battery storage capacity to be reduced, whilst still maintaining an acceptable vehicle range. This paper presents results from a drive style analysis toolset that enable US and EU fleet vehicle drive data to be categorized and compared. Key metrics, such as idle frequency, idle duration, vehicle speed, and vehicle acceleration are analyzed.
Technical Paper

Application of the Passive MAHLE Jet Ignition System and Synergies with Miller Cycle and Exhaust Gas Recirculation

2020-04-14
2020-01-0283
Driven by legislation, economics and increasing societal awareness, engine and vehicle manufacturers are facing increasing pressure to reduce vehicle emissions and deliver improved fuel economy. Significant reductions in carbon dioxide (CO2) emissions will need to be achieved to meet these requirements whilst at the same time satisfying the more stringent forthcoming emissions regulations. This focus on techniques to reduce the tailpipe CO2 is increasing the interest in novel combustion technologies, including dilute combustion in gasoline engines. The pre-chamber based jet ignition concept produces high energy jets of partially combusted species that induce ignition at multiple locations in the main combustion chamber to enable rapid, stable combustion, even with dilute mixtures. The present study focusses on the beneficial synergies of the pre-chamber system with high geometric compression ratio (CR), Miller cycle operation and cooled external exhaust gas recirculation (EGR).
Journal Article

Challenges for Increased Efficiency through Gasoline Engine Downsizing

2009-04-20
2009-01-1053
In order to achieve the required future CO2 reduction targets, significant further development of both gasoline and diesel engines is required. One of the main methods to achieve this with the gasoline engine in the short to medium term is through the application of engine downsizing, which has resulted in numerous downsized engines already being brought to production. It is, however, considered that there is still significant further CO2 reduction potential through continued development of this technology. This paper considers the future development of gasoline engine downsizing in the short to medium term and the various technologies that can be applied to further increase the efficiency of operation. As such this paper covers, among other areas, fundamental engine layout and design, alternative boosting systems, methods of increasing part load efficiency and vehicle modelling, and uses analysis tools and engine test results to show the benefits achievable.
Technical Paper

Development of a Light-Duty Commercial Vehicle Demonstrator Featuring a Low-Cost PCB Fuel Cell

2022-03-29
2022-01-0696
Today the light-duty commercial market is dominated by internal combustion engine powered vehicles, primarily diesel-powered delivery vans, which contribute to urban air quality issues. Global concerns regarding climate change have prompted zero emission vehicles to be mandatory in many markets as soon as 2035. For the light-duty commercial vehicle sector there is significant interest in pure electric vehicles. However, for some markets, or usage cases, electric vehicles may not be the best solution due to practical limitations of battery energy storage capacity or recharging times. For such applications there is growing interest in hydrogen fuel cells as a zero emissions alternative. Bramble Energy’s patented printed circuit board (PCB) fuel cell technology (PCBFC™) enables the use of cost-effective production methods and materials from the PCB industry to reduce the cost and complexity of manufacturing hydrogen fuel cell stacks.
Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a modern production 6 cylinder 7.7 litre heavy-duty diesel engine for flex dual-fuel operation with ammonia as the main fuel. A small amount of diesel fuel (pilot) was used as an ignition source. Ammonia was injected into the intake ports during the intake stroke, while the original direct fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and all other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
Journal Article

Dynamic Downsizing Gasoline Demonstrator

2017-03-28
2017-01-0646
Gasoline engine downsizing is already established as a technology for reducing vehicle CO2 emissions. Further benefits are possible through more aggressive downsizing, however, the tradeoff between the CO2 reduction achieved and vehicle drivability limits the level of engine downsizing currently adopted by vehicle manufacturers. This paper will present the latest results achieved from a very heavily downsized engine, and resulting demonstrator vehicle, featuring eSupercharging in combination with a conventional turbocharger. The original 1.2 litre, 3-cylinder, MAHLE downsizing engine has been re-configured to enable a specific power output in excess of 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Technical Paper

Effect of Jet Ignition on Lean Methanol Combustion Using High Compression Ratio

2023-04-11
2023-01-0319
Significant reductions in vehicle carbon dioxide (CO2) emissions are required to meet fleet targets and this is increasing the interest in new combustion concepts for internal combustion engines. There is also an increased focus on the use of renewable fuels to reduce environmental impact. This study focusses on the use of methanol as an internal combustion engine fuel. Methanol is a liquid fuel that is readily produced from waste bio-matter, as well as synthetically using renewable energy, and is proposed as a primary energy vector in hard-to-decarbonise sectors, such as Marine, but could be equally applicable to road transportation. In this study, the MAHLE Di3 engine, which is a highly boosted 3-cylinder gasoline direct injection engine capable of operating at over 30 bar BMEP, has been modified to include MAHLE Jet Ignition technology, in both passive and active configurations, as well as utilising a very high compression ratio to maximise thermal efficiency.
Technical Paper

Evaluating Synergies between Fuels and Near Term Powertrain Technologies through Vehicle Drive Cycle and Performance Simulation

2012-04-16
2012-01-0357
The main focus nowadays for the development of future vehicle powertrain systems is the improvement in fuel efficiency alongside the reduction of pollutant emissions and greenhouse gasses, most notably carbon dioxide. The automotive community is already engaged in seeking solutions to these issues, however, the ideal solution, namely zero emission vehicle is still regarded as being a long way from fruition for the mass market. In the meantime steps are being taken, in terms of engineering development, towards improved fuel efficiency and sustainability of relatively conventionally powered vehicles. One approach to the decarbonization of road vehicles is to supplement existing fossil fuels with sustainable biofuels.
Technical Paper

GPS Based Energy Management Control for Plug-in Hybrid Vehicles

2015-04-14
2015-01-1226
In 2012 MAHLE Powertrain developed a range-extended electric vehicle (REEV) demonstrator, based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has developed control software which can intelligently manage the use of the battery energy through the combined use of GPS and road topographical data. Advanced knowledge of the route prior to the start of a journey enables the software to calculate the SOC throughout the journey and pre-determine the optimum operating strategy for the range extender to enable best charging efficiency and minimize NVH. The software can also operate without a pre-determined route being selected.
Journal Article

Heavily Downsized Demonstrator Engine Optimised for CNG Operation

2016-10-17
2016-01-2363
The complexity of modern powertrain development is demonstrated by the combination of requirements to meet future emission regulations and test procedures such as Real Driving Emissions (RDE), reduction of fuel consumption and CO2 emissions as well as customer expectations for good driving performance. Gasoline engine downsizing is already established as a proven technology to reduce automotive fleet CO2 emissions. Additionally, alternative fuels such as natural gas, offer the potential to significantly reduce both tailpipe CO2 and other regulated exhaust gas emissions without compromising driving performance and driving range. This paper presents results showing how the positive fuel properties of natural gas can be fully utilised in a heavily downsized engine. The engine has been modified to cope with the significantly higher mechanical and thermal loads when operating at high specific outputs on compressed natural gas (CNG).
Journal Article

Heavily Downsized Gasoline Demonstrator

2016-04-05
2016-01-0663
Gasoline engine downsizing is already established as a proven technology to reduce automotive fleet CO2 emissions by as much as 25 %. Further benefits are possible through more aggressive downsizing, however, the trade-off between the CO2 reduction achieved and vehicle drive-ability limits the level of engine downsizing currently adopted. This paper presents results showing the benefits of adding an eSupercharger to a very heavily downsized engine. Measurements are presented from a 1.2 litre, 3-cylinder, engine fitted with an eSupercharger in addition to a conventional turbocharger. The original MAHLE downsizing engine has been re-configured to enable a specific power output that exceeds 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Technical Paper

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-04-02
2019-01-0325
The HyPACE (Hybrid Petrol Advanced Combustion Engine) project is a part UK government funded research project established to develop a high thermal efficiency petrol engine that is optimized for hybrid vehicle applications. The project combines the capabilities of a number of partners (Jaguar Land Rover, BorgWarner, MAHLE Powertrain, Johnson Matthey, Cambustion and Oxford University) with the target of achieving a 10% vehicle fuel consumption reduction, whilst still achieving a 90 to 100 kW/liter power rating through the novel application of a combination of new technologies. The baseline engine for the project was Jaguar Land Rover’s new Ingenium 4-cylinder petrol engine which includes an advanced continuously variable intake valve actuation mechanism. A concept study has been undertaken and detailed combustion Computational Fluid Dynamics (CFD) models have been developed to enable the optimization of the combustion system layout of the engine.
Technical Paper

Knock Mitigation Benefits Achieved through the Application of Passive MAHLE Jet Ignition Enabling Increased Output under Stoichiometric Operation

2021-04-06
2021-01-0477
Engine and vehicle manufacturers are facing increasing pressure from legislation to reduce vehicle emissions and deliver improved fuel economy. Significant reductions in carbon dioxide (CO2) emissions will need to be achieved to meet these requirements whilst also satisfying the more stringent forthcoming emissions regulations. This focus on techniques to reduce the tailpipe CO2, whilst also being able to operate over the whole map without the use of fuel enrichment for component protection, is increasing the interest in novel combustion technologies. The pre-chamber-based Jet Ignition concept produces high energy jets of partially combusted species that induce ignition in the main combustion chamber to enable rapid and stable combustion. The present study focusses on the potential of passive jet-ignition to enable increased output whilst maintaining stoichiometric operation through reduce knock sensitivity.
Technical Paper

New Operating Strategies Afforded by Fully Variable Valve Trains

2004-03-08
2004-01-1386
Electrohydraulic and electromechanical valve train technologies for four-stroke engines are emerging which allow much greater flexibility and control of the valve events than can be achieved using mechanically-based systems. Much of the work done on exploiting the benefits of these systems has been directed towards improving engine fuel economy and reducing emissions. In the present work a study has been made, using an engine simulation program, in to some of the possible benefits to engine performance that may be facilitated by the flexibility of fully variable valve train (FVVT) systems. The simulation study indicates that FVVT systems, limited by realistic opening and closing rates, provide sufficient range in the valve event duration and timing to enable the engine to produce very high specific outputs whilst achieving a high level of torque in the low- and mid-speed range.
Technical Paper

Performance and Fuel Economy Enhancement of Pressure Charged SI Engines through Turboexpansion - An Initial Study

2003-03-03
2003-01-0401
One of the most expedient routes to improving in-vehicle fuel economy is to reduce the swept volume of an engine and run it at a higher BMEP for any given output. This can be achieved through pressure charging. However, for maximum fuel economy, particularly at part-load, the compression ratio (CR) should be kept as high as possible. This is at odds with the requirement in pressure charged engines to reduce the CR at higher loads due to the knock limit. Lotus has studied a pressure charging system which will allow a high compression ratio to be maintained at all times. This is achieved by deliberately over compressing the charge air, intercooling it at the resulting elevated pressure, and then expanding it, via a turbine, to the desired plenum boost pressure, ensuring a plenum temperature which can potentially become sub-ambient at full-load.
Technical Paper

Technical Assessment of the Feasibility of the use of Bio-Gasoline as a Drop-In Gasoline Fossil Fuel Replacement

2022-08-30
2022-01-1087
Vehicle manufacturers are facing increasing legislative pressure to reduce vehicle emissions and achieve zero tailpipe CO2 emissions within the coming decade. The focus on techniques to reduce the tailpipe CO2 emissions, rather than vehicle lifecycle emissions, naturally dictates electrified solutions. However, this will not address the increased emissions resulting from vehicle manufacture, the emissions of the legacy fleet, or enable niche or classic applications, to be decarbonised for future use. The use of bio-derived fuels, and fully synthetic fuels, can provide a technical solution to these challenges, but it is beneficial if these can be used as a drop-in replacement to existing fossil derived fuels, as this would enable straight-forward backward compatibility with existing vehicles and avoid the need to re-engineer future engine designs or upgrade existing hardware.
Technical Paper

The Development of a Range Extender Electric Vehicle Demonstrator

2013-04-08
2013-01-1469
This paper, which is the fourth of a series, presents the REEV demonstrator vehicle developed by MAHLE Powertrain, which features a specifically designed range extender unit. The previous papers describe the specification setting, detailed design and the development of the range extender engine. A current production gasoline fuelled compact-class car was used as a donor vehicle and converted into a range-extended electric vehicle (REEV). The all-electric driveline specification has been developed to meet the performance criteria set for the demonstrator, matching the acceleration and maximum speed capabilities of the conventional donor vehicle. Also, a target electric only range has enabled the battery pack capacity to be specified. The resulting vehicle is intended to reflect likely, near to market, steps to further the wider adoption of electric vehicles in the compact-class passenger car segment.
Technical Paper

The Turboexpansion Concept - Initial Dynamometer Results

2005-04-11
2005-01-1853
An expedient route to improving in-vehicle fuel economy in 4-stroke cycle engines is to reduce the swept volume of an engine and run it at a higher BMEP for any given output. The full-load performance of a larger capacity engine can be achieved through pressure charging. However, for maximum fuel economy, particularly at part-load, the expansion ratio, and consequently the compression ratio (CR) should be kept as high as possible. This is at odds with the requirement in pressure-charged gasoline engines to reduce the CR at higher loads due to the knock limit. In earlier work, the authors studied a pressure-charging system aimed at allowing a high CR to be maintained at all times. The operation of this type of system involves deliberately over-compressing the charge air, cooling it at the elevated pressure and temperature, and then expanding it down to the desired plenum pressure, ensuring a plenum temperature which can potentially become sub-atmospheric at full-load.
X