Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Modeling of Air Fuel Mixing in a Stratified Gasoline Direct Injection Engine Using Multicomponent Fuel Representation

2003-03-03
2003-01-0067
This paper describes a numerical study on air/fuel preparation process in a direct-injected spark-ignition engine under partial load stratified conditions. The fuel is represented as a mixture of four components with a distillation curve similar to that of actual gasoline, and its vaporization processes are simulated by two recently formulated multicomponent vaporization models for droplet and film, respectively. The models include major mechanisms such as non-ideal behavior in high-pressure environments, preferential vaporization, internal circulation, surface regression, and finite diffusion in the liquid phase. A spray/wall impingement model with the effect of surface roughness is used to represent the interaction between the fuel spray and the solid wall. Computations of single droplet and film on a flat plate were first performed to study the impact of fuel representation and vaporization model on the droplet and film vaporization processes.
Technical Paper

Modeling of Air-Fuel Mixing in a Two-Stroke Direct Injection Engine

2003-10-27
2003-01-3103
This paper presents a numerical study on air-fuel mixing in a two-stroke direct injection spark ignition engine under homogeneous operation. The simulated engine is loop scavenged and uses an outwardly opening swirl injector. A generic mesh-snapping algorithm is developed to enable the moving piston to snap through transfer ports with complicated geometry. A spray model based on Linear Instability Sheet Atomization is used to describe the primary breakup of fuel sprays, and the initial rotational velocity of the conical sheet is determined from a CFD simulation of the nozzle internal flow. A wall film model accounting for the effect of contacting area is also developed to avoid the severe grid-dependence of the original film model in KIVA. Comparisons between simulations and experiments were made for sprays in quiescent ambient conditions, and a good agreement of the spray characteristics was obtained. The simulations were performed for four different injection timings.
Journal Article

Validation of a LES Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel

2021-04-06
2021-01-0399
The establishment of highly-diluted combustion strategies is one of the major challenges that the next generation of sustainable internal combustion engines must face. The desirable use of high EGR rates and of lean mixtures clashes with the tolerable combustion stability. To this aim, the development of numerical models able to reproduce the degree of combustion variability is crucial to allow the virtual exploration and optimization of a wide number of innovative combustion strategies. In this study ignition experiments using a conventional coil system are carried out in a closed volume combustion vessel with side-oriented flow generated by a speed-controlled fan. Acquisitions for four combinations of premixed propane/air mixture quality (Φ=0.9,1.2), dilution rate (20%-30%) and lateral flow velocity (1-5 m/s) are used to assess the modelling capabilities of a newly developed spark-ignition model for large-eddy simulation (GLIM, GruMo-UniMORE LES Ignition Model).
X