Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Simulation of Auto-Ignition and Combustion of n-Butane and Air Mixtures in a 4 Stroke HCCI Engine by Using Elementary Reactions

2000-06-19
2000-01-1834
HCCI (Homogeneous Charge Compression Ignition) engine is expected to a new engine to be high efficiency and low emission. But it is difficult to control ignition timing and combustion duration, because ignition and combustion mainly depend on oxidation process of fuel. In this study, the focus is to clear the combustion mechanism of auto-ignition engine. By calculating chemical kinetics of elementary reactions, effects of compression speed, equivalence ratio, initial temperature and compression ratio on auto-ignition were investigated. And also, behaviors of chemical species under auto-ignition process were cleared.
Technical Paper

Study on Auto-Ignition and Combustion Mechanism of HCCI Engine

2004-09-27
2004-32-0095
In the HCCI (Homogeneous Charge Compression Ignition) engine, a mixture of fuel and air is supplied to the cylinder and auto-ignition occurs resulting from compression. This method can expand the lean flammability limit, realizing smokeless combustion and also having the potential for realizing low NOx and high efficiency. The optimal ignition timing is necessary in order to keep high thermal efficiency. The Ignition in the HCCI engine largely depends on the chemical reaction between the fuel and the oxidizer. Physical methods in conventional engines cannot control it, so a chemical method is demanded. Combustion duration is maintained properly to avoid knocking. In addition, the amount of HC and CO emissions must be reduced. The objective of this study is to clarify the following through calculations with detailed chemical reactions and through experiment with the 2-stroke HCCI engine: the chemical reaction mechanism, and HC and CO emission mechanisms.
X