Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of NVH Vehicle Testing Variability

2005-05-16
2005-01-2553
At certain key stages in the vehicle development process, prototype vehicles are available for NVH testing. This testing fulfills two functions: primarily it is used to assess the status of the vehicle to the program NVH performance targets, but it also provides an opportunity to validate the vehicle SEA model. These single vehicle test events provide a snapshot of the NVH performance but do not provide any understanding of the variability of the NVH performance, which is due to many factors: components, build or assembly and test setup variability. SEA models can be used to estimate the vehicle level variability, if the variability of the interior components is understood, but there is limited data available to confirm the accuracy of these predictions. In this paper we examine the repeatability and reproducibility through a standard gage R&R study of Engine Noise Reduction (engine NR) and Tire NR testing.
Journal Article

Guidelines for Using Fast Multipole BEM to Calculate Automotive Exterior Acoustic Loads in SEA Models

2009-05-19
2009-01-2220
Automotive interior noise at mid and high frequencies is typically dominated by the airborne noise from acoustic sources that are spatially distributed around a vehicle. Each source is typically spatially compact (for example, a tire contact patch) but the source radiates sound that then propagates across the entire exterior surface of the vehicle. To characterize a source it is therefore necessary to know both the sound pressure level in the vicinity of the source and also the way in which sound from the source diffracts around the vehicle. The former depends on the details of the source, the latter typically depends on the overall vehicle geometry. When creating Statistical Energy Analysis (SEA) models of interior noise, the diffraction of airborne loads around a vehicle is often measured experimentally.
Technical Paper

Statistical Energy Analysis of a Fuel Cell Vehicle

2005-05-16
2005-01-2425
In this paper the application of Statistical Energy Analysis (SEA) to the sound package design for a fuel cell powered sedan is presented. Fuel cell vehicles represent a different challenge to a vehicle with a conventional powertrain. With the replacement of the internal combustion engine (ICE), a principal source of airborne and structure-borne powertrain noise, the expectation is that the cabin noise levels would be significantly reduced as the main noise sources would be road and wind noise. A fuel cell powertrain, however, has a number of mechanical sources on the body structure that will radiate airborne noise and may transmit significant structure-borne noise to the vehicle interior. With this alternative power train, much of the conventional wisdom on vehicle sound package developed from experience with ICE's must be reconsidered.
X