Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Application of Variation Simulation - Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout

2011-05-17
2011-01-1543
An application of variation simulation for predicting vehicle interior driveline vibration is presented. The model, based on a “Monte Carlo”-style approach, predicts the noise, vibration and harshness (NVH) response of the vehicle driveline based on distributions of imbalance and runout derived from manufacturing production variation (the forcing function) and the vehicle's sensitivity to the forcing function. The model is used to illustrate the change in vehicle interior vibration that results when changes are made to production variation for runout and imbalance of driveline components, and how those same changes result in different responses based on vehicle sensitivity.
Technical Paper

Correlation of Axle Build Parameters to End-of-Line NVH Test Performance Part I: Preparing the Data for Multivariate Regression Analysis

2012-04-16
2012-01-0727
The first part of a detailed examination of multivariate correlation of several axle assembly and component parameters to the assembly NVH performance (vibration) measured at the end of the assembly process is presented focusing on preparing the data for multivariate regression analysis. The study is based on test results and measurements acquired from multiple axle assemblies built with the same hypoid gearset, thus effectively eliminating the affect of gearset variation on the test result. Several major components within the axle are considered including the differential housing (that controls wheel differentiation during turns), the axle housing, and several assembly parameters.
Technical Paper

Correlation of Axle Build Parameters to End-of-Line NVH Test Performance Part II: Multivariate Regression Analysis

2012-04-16
2012-01-0728
The second part of a detailed examination of multivariate correlation of several axle assembly and component parameters to the assembly NVH performance (vibration) measured at the end of the assembly process is presented focusing on the multivariate linear regression analysis. The study is based on test results and measurements acquired from multiple axle assemblies built with the same hypoid gearset, thus effectively eliminating the affect of gearset variation on the test result. Several major components within the axle are considered including the differential housing (that controls wheel differentiation during turns), the axle housing, and several assembly parameters. Details of the multivariate regression include formulation of the linear regression model, model refinements through analysis of subsets of the variables, tests of significance and residual analysis.
X